ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we systematically study the two-proton($2p$) radioactivity half-lives using the two-potential approach while the nuclear potential is obtained by using Skyrme-Hartree-Fock approach with the Skyrme effective interaction of {SLy8}. For tr ue $2p$ radioactivity($Q_{2p}$ $>$ 0 and $Q_p$ $< $0, where the $Q_p$ and $Q_{2p}$ are the released energy of the one-proton and two-proton radioactivity), the standard deviation between the experimental half-lives and our theoretical calculations is {0.701}. In addition, we extend this model to predict the half-lives of 15 possible $2p$ radioactivity candidates with $Q_{2p}$ $>$ 0 taken from the evaluated atomic mass table AME2016. The calculated results indicate that a clear linear relationship between the logarithmic $2p$ radioactivity half-lives $rm{log}_{10}T_{1/2}$ and coulomb parameters [ ($Z_{d}^{0.8}$+$l^{0.25}$)$Q_{2p}^{-1/2}$] considered the effect of orbital angular momentum proposed by Liu $et$ $al$ [Chin. Phys. C textbf{45}, 024108 (2021)] is also existed. For comparison, the generalized liquid drop model(GLDM), the effective liquid drop model(ELDM) and Gamow-like model are also used. Our predicted results are consistent with the ones obtained by the other models.
62 - Shu Wang , Zhan Ma , Wenxiao Pan 2021
Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. H owever, it usually experiences significantly altered dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that can faithfully preserve dynamics, previous efforts mainly focused on equilibrium systems. In contrast, various soft matter systems are known out of equilibrium. Therefore, the present work concerns non-equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium dynamics and is generally applicable to any non-equilibrium process and any observable of interest. To this end, the dynamic equation of a CG variable is built in the form of the non-stationary generalized Langevin equation (nsGLE) to account for the dependence of non-equilibrium processes on the initial conditions, where the two-time memory kernel is determined from the data of the two-time auto-correlation function of the non-equilibrium trajectory-averaged observable of interest. By embedding the non-stationary non-Markovian process in an extended stochastic framework, an explicit form of the non-stationary random noise in the nsGLE is introduced, and the cost is significantly reduced for solving the nsGLE to predict the non-equilibrium dynamics of the CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the memory kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimization process is proposed for the parameterization, a non-convex and high-dimensional optimization problem.
In the present work, combining with the Geiger-Nuttall law, a two-parameter empirical formula is proposed to study the two-proton (2p) radioactivity. Using this formula, the calculated 2p radioactivity half-lives are in good agreement with the experi mental data as well as the calculated ones obtained by Goncalves et al: ([Phys. Lett. B 774, 14 (2017)]) using the effective liquid drop model (ELDM), Sreeja et al: ([Eur. Phys. J. A 55, 33 (2019)]) using a four-parameter empirical formula and Cui et al: ([Phys. Rev. C 101: 014301 (2020)]) using a generalized liquid drop model (GLDM). In addition, this two-parameter empirical formula is extended to predict the half-lives of 22 possible 2p radioactivity candidates, whose the 2p radioactivity released energy Q2p>0, obtained from the latest evaluated atomic mass table AME2016. The predicted results have good consistency with ones using other theoretical models such as the ELDM, GLDM and four-parameter empirical formula.
194 - Liwei Wu , Xiao Pan , Zehui Lin 2020
This paper describes our VolcTrans system on WMT20 shared news translation task. We participated in 8 translation directions. Our basic systems are based on Transformer, with several variants (wider or deeper Transformers, dynamic convolutions). The final system includes text pre-process, data selection, synthetic data generation, advanced model ensemble, and multilingual pre-training.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-tra in a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple low-resource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pre-training corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Quantifying success in science plays a key role in guiding funding allocations, recruitment decisions, and rewards. Recently, a significant amount of progresses have been made towards quantifying success in science. This lack of detailed analysis and summary continues a practical issue. The literature reports the factors influencing scholarly impact and evaluation methods and indices aimed at overcoming this crucial weakness. We focus on categorizing and reviewing the current development on evaluation indices of scholarly impact, including paper impact, scholar impact, and journal impact. Besides, we summarize the issues of existing evaluation methods and indices, investigate the open issues and challenges, and provide possible solutions, including the pattern of collaboration impact, unified evaluation standards, implicit success factor mining, dynamic academic network embedding, and scholarly impact inflation. This paper should help the researchers obtaining a broader understanding of quantifying success in science, and identifying some potential research directions.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, the y often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Action recognition has been a widely studied topic with a heavy focus on supervised learning involving sufficient labeled videos. However, the problem of cross-domain action recognition, where training and testing videos are drawn from different unde rlying distributions, remains largely under-explored. Previous methods directly employ techniques for cross-domain image recognition, which tend to suffer from the severe temporal misalignment problem. This paper proposes a Temporal Co-attention Network (TCoN), which matches the distributions of temporally aligned action features between source and target domains using a novel cross-domain co-attention mechanism. Experimental results on three cross-domain action recognition datasets demonstrate that TCoN improves both previous single-domain and cross-domain methods significantly under the cross-domain setting.
A general asymptotic theory is given for the panel data AR(1) model with time series independent in different cross sections. The theory covers the cases of stationary process, nearly non-stationary process, unit root process, mildly integrated, mild ly explosive and explosive processes. It is assumed that the cross-sectional dimension and time-series dimension are respectively $N$ and $T$. The results in this paper illustrate that whichever the process is, with an appropriate regularization, the least squares estimator of the autoregressive coefficient converges to a normal distribution with rate at least $O(N^{-1/3})$. Since the variance is the key to characterize the normal distribution, it is important to discuss the variance of the least squares estimator. We will show that when the autoregressive coefficient $rho$ satisfies $|rho|<1$, the variance declines at the rate $O((NT)^{-1/2})$, while the rate changes to $O(N^{-1/2}T^{-1})$ when $rho=1$ and $O(N^{-1/2}rho^{-T+2})$ when $|rho|>1$. $rho=1$ is the critical point where the convergence rate changes radically. The transition process is studied by assuming $rho$ depending on $T$ and going to $1$. An interesting phenomenon discovered in this paper is that, in the explosive case, the least squares estimator of the autoregressive coefficient has a standard normal limiting distribution in panel data case while it may not has a limiting distribution in univariate time series case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا