ترغب بنشر مسار تعليمي؟ اضغط هنا

174 - Ruo-Yu Liu , Xiang-Yu Wang 2021
Very recently, diffuse gamma rays with $0.1,{rm PeV}<E_gamma <1,rm PeV$ have been discovered from the Galactic disk by the Tibet air shower array and muon detector array (Tibet AS+MD array). While the measured sub-PeV flux may be compatible with the hadronic origin in the conventional Galactic cosmic ray propagation model, we find that it is in possible tension with the non-detection of Galactic neutrino emissions by the IceCube neutrino telescope. We further find that the presence of an extra cosmic ray component of relatively hard spectrum, which is probably related to the Cygnus Cocoon region and other PeV cosmic-ray sources in the Galactic disk, would alleviate the tension. This scenario implies the existence of an extreme accelerator of either protons or electrons beyond PeV in the Cygnus region, and predicts the continuation of the gamma-ray spectrum of Cygnus Cocoon up to 1 PeV with a possible hardening beyond $sim 30-100,$TeV.
Recently, a high-energy muon neutrino event was detected in association with a tidal disruption event (TDE) AT2019dsg at the time about 150 days after the peak of the optical/UV luminosity. We propose that such a association could be interpreted as a rising from hadronic interactions between relativistic protons accelerated in the jet launched from the TDE and the intense radiation field of TDE inside the optical/UV photosphere, if we are observing the jet at a moderate angle (i.e., approximately 10-30 degree) with respect to the jet axis. Such an off-axis viewing angle leads to a high gas column density in the line of sight which provides a high opacity for the photoionization and the Bethe-Heitler process, {and allows the existence of an intrinsic long-term X-ray radiation of comparatively high emissivity}. As a result, the cascade emission accompanying the neutrino production, which would otherwise overshoot the flux limits in X-ray and/or GeV band, is significantly obscured or absorbed. Since the jets of TDEs are supposed to be randomly oriented in the sky, the source density rate of TDE with an off-axis jet is significantly higher than that of TDE with an on-axis jet. Therefore, an off-axis jet is naturally expected in a nearby TDE being discovered, supporting the proposed scenario.
The interaction between a supernova ejecta and the circum-stellar medium drives a strong shock wave which accelerates particles (i.e., electrons and protons). The radio and X-ray emission observed after the supernova explosion constitutes the evidenc e of the electron acceleration. The accelerated protons are expected to produce GeV-TeV gamma-ray emission via $pp$ collisions, but the flux is usually low since only a small fraction of the supernova kinetic energy is converted into the shock energy at the very early time. The low gamma-ray flux of the nearest supernova explosion, SN 1987A, agrees with this picture. Here we report a serendipitous discovery of a fading GeV gamma-ray source in spatial coincidence with the second nearest supernova--SN 2004dj from our gamma-ray survey of nearby star-forming galaxies with Fermi-LAT. The total gamma-ray energy released by SN 2004dj is about $6times10^{47}{rm erg}$. We interpret this gamma-ray emission arising from the supernova ejecta interacting with a surrounding high-density shell, which decelerates the ejecta and converts ~1% of the ejectas kinetic energy to relativistic protons. In addition, our gamma-ray survey of nearby star-forming galaxies discovers GeV emissions from two star-forming galaxies, i.e., Arp 299 and M33, for the first time.
Various studies have implied the existence of a gaseous halo around the Galaxy extending out to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the cosmic ray distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, CR spectral index. We find that the current measurement of isotropic gamma-ray background at $lesssim$TeV with Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic cosmic ray (e.g., with CR luminosity $L_{CR}leq 10^{41}$erg/s). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between cosmic rays and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restriction on the relevant quantities (such as Galactic cosmic ray luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider.
Recent HESS observations of the ~200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic Center. Interestingly, th e gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic Center shows a cutoff at ~10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single, yet fading accelerator. In this model, gamma rays from the CMZ region are produced by protons injected in the past, while gamma rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.
Recently, Fermi-LAT detected GeV emission during the X-ray flaring activity in GRB 100728A. We study various scenarios for its origin. The hard spectrum of the GeV emission favors the external inverse-Compton origin in which X-ray flare photons are u p-scattered by relativistic electrons in the external forward shock. This external IC scenario, with anisotropic scattering effect taken into account, can reproduce the temporal and spectral properties of the GeV emission in GRB 100728A.
150 - Dirk Grupe 2006
We report the results of the Swift and XMM observations of the Swift-discovered long Gamma-Ray Burst GRB 060729 ($T_{90}$=115s). The afterglow of this burst was exceptionally bright in X-rays as well as at UV/Optical wavelengths showing an unusually long slow decay phase ($alpha$=0.14plm0.02) suggesting a larger energy injection phase at early times than in other bursts. The X-ray light curve displays a break at about 60 ks after the burst. The X-ray decay slope after the break is $alpha$=1.29plm0.03. Up to 125 days after the burst we do not detect a jet break, suggesting that the jet opening angle is larger than 28 degrees. In the first 2 minutes after the burst (rest frame) the X-ray spectrum of the burst changed dramatically from a hard X-ray spectrum to a very soft one. We find that the X-ray spectra at this early phase can all be fitted by an absorbed single power law model or alternatively by a blackbody plus power law model. The power law fits show that the X-ray spectrum becomes steeper while the absorption column density decreases. In Swifts UV/Optical telescope the afterglow was clearly detected up to 9 days after the burst in all 6 filters and even longer in some of the UV filters with the latest detection in the UVW1 31 days after the burst. A break at about 50 ks is clearly detected in all 6 UVOT filters from a shallow decay slope of about 0.3 and a steeper decay slope of 1.3. In addition to the swift observations we also present and discuss the results from a 61 ks ToO observation by XMM. (Abriviated)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا