ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a new semantic communication mechanism, whose key idea is to preserve the semantic information instead of strictly securing the bit-level precision. Starting by analyzing the defects of existing joint source channel coding (JSCC) methods , we show that the commonly used bit-level metrics are vulnerable of catching important semantic meaning and structures. To address this problem, we take advantage of learning from semantic similarity, instead of relying on conventional paired bit-level supervisions like cross entropy and bit error rate. However, to develop such a semantic communication system is indeed a nontrivial task, considering the nondifferentiability of most semantic metrics as well as the instability from noisy channels. To further resolve these issues, we put forward a reinforcement learning (RL)-based solution which allows us to simultaneously optimize any user-defined semantic measurement by using the policy gradient technique, and to interact with the surrounding noisy environment in a natural way. We have testified the proposed method in the challenging European-parliament dataset. Experiments on both AWGN and phase-invariant fading channel have confirmed the superiority of our method in revealing the semantic meanings, and better handling the channel noise especially in low-SNR situations. Apart from the experimental results, we further provide an indepth look at how the semantics model behaves, along with its superb generalization ability in real-life examples. As a brand new method in learning-based JSCC tasks, we also exemplify an RL-based image transmission paradigm, both to prove the generalization ability, and to leave this new topic for future discussion.
The Internet of Vehicles (IoV) enables real-time data exchange among vehicles and roadside units and thus provides a promising solution to alleviate traffic jams in the urban area. Meanwhile, better traffic management via efficient traffic light cont rol can benefit the IoV as well by enabling a better communication environment and decreasing the network load. As such, IoV and efficient traffic light control can formulate a virtuous cycle. Edge computing, an emerging technology to provide low-latency computation capabilities at the edge of the network, can further improve the performance of this cycle. However, while the collected information is valuable, an efficient solution for better utilization and faster feedback has yet to be developed for edge-empowered IoV. To this end, we propose a Decentralized Reinforcement Learning at the Edge for traffic light control in the IoV (DRLE). DRLE exploits the ubiquity of the IoV to accelerate the collection of traffic data and its interpretation towards alleviating congestion and providing better traffic light control. DRLE operates within the coverage of the edge servers and uses aggregated data from neighboring edge servers to provide city-scale traffic light control. DRLE decomposes the highly complex problem of large area control. into a decentralized multi-agent problem. We prove its global optima with concrete mathematical reasoning. The proposed decentralized reinforcement learning algorithm running at each edge node adapts the traffic lights in real time. We conduct extensive evaluations and demonstrate the superiority of this approach over several state-of-the-art algorithms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا