ترغب بنشر مسار تعليمي؟ اضغط هنا

Diamagnetic levitation offers stable confinement of an object from its environment at zero power, and thus is a promising technique for developing next generation unclamped resonant sensors. In this work, we realize a resonant weighing scale using a graphite plate that is diamagnetically levitating over a checkerboard arrangement of permanent magnets. We characterize the bending vibrations of the levitating object using laser Doppler vibrometry and use microgram glass beads to calibrate the responsivity of the sensors resonance frequency to mass changes. The sensor is used for real-time measurement of the evaporation rate of nano-litre droplets with high-accuracy. By analyzing the resonators frequency stability, we show that the millimeter graphite sensor can reach mass resolutions down to 4.0ng, relevant to biological and chemical sensing concepts.
Flash Loan attack can grab millions of dollars from decentralized vaults in one single transaction, drawing increasing attention from the Decentralized Finance (DeFi) players. It has also demonstrated an exciting opportunity that a huge wealth could be created by composing DeFis building blocks and exploring the arbitrage change. However, a fundamental framework to study the field of DeFi has not yet reached a consensus and theres a lack of standard tools or languages to help better describe, design and improve the running processes of the infant DeFi systems, which naturally makes it harder to understand the basic principles behind the complexity of Flash Loan attacks. In this paper, we are the first to propose Flashot, a prototype that is able to transparently illustrate the precise asset flows intertwined with smart contracts in a standardized diagram for each Flash Loan event. Some use cases are shown and specifically, based on Flashot, we study a typical Pump and Arbitrage case and present in-depth economic explanations to the attackers behaviors. Finally, we conclude the development trends of Flash Loan attacks and discuss the great impact on DeFi ecosystem brought by Flash Loan. We envision a brand new quantitative financial industry powered by highly efficient automatic risk and profit detection systems based on the blockchain.
The notion of topological phases extended to dynamical systems stimulates extensive studies, of which the characterization of non-equilibrium topological invariants is a central issue and usually necessitates the information of quantum dynamics in bo th the time and spatial dimensions. Here we combine the recently developed concepts of the dynamical classification of topological phases and synthetic dimension, and propose to efficiently characterize photonic topological phases via holographic quench dynamics. A pseudo spin model is constructed with ring resonators in a synthetic lattice formed by frequencies of light, and the quench dynamics is induced by initializing a trivial state which evolves under a topological Hamiltonian. Our key prediction is that the complete topological information of the Hamiltonian is extracted from quench dynamics solely in the time domain, manifesting holographic features of the dynamics. In particular, two fundamental time scales emerge in the quench dynamics, with one mimicking the Bloch momenta of the topological band and the other characterizing the residue time evolution of the state after quench. For this a dynamical bulk-surface correspondence is obtained in time dimension and characterizes the topology of the spin model. This work also shows that the photonic synthetic frequency dimension provides an efficient and powerful way to explore the topological non-equilibrium dynamics.
Moire lattices consist of two identical periodic structures overlaid with a relative rotation angle. Present even in everyday life, moire lattices have been also produced, e.g., with coupled graphene-hexagonal boron nitride monolayers, graphene-graph ene layers, and layers on a silicon carbide surface.A fundamental question that remains unexplored is the evolution of waves in the potentials defined by the moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which, unlike their material predecessors, have readily controllable parameters and symmetry allowing to explore transitions between structures with fundamentally different geometries: periodic, general aperiodic and quasi-crystal ones. Equipped with such realization, we observe localization of light in deterministic linear lattices. Such localization is based on at band physics, in contrast to previous schemes based on light difusion in optical quasicrystals,where disorder is required for the onset of Anderson localization. Using commensurable and incommensurable moire patterns, we report the first experimental demonstration of two-dimensional localization-delocalization-transition (LDT) of light. Moire lattices may feature almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool to control the properties of light patterns, to explore the physics of transitions between periodic and aperiodic phases, and two-dimensional wavepacket phenomena relevant to several areas of science.
Single-photon super- and subradiance are important for the quantum memory and quantum information. We investigate one-dimensional atomic arrays under the spatially periodic magnetic field with a tunable phase, which provides a distinctive physics asp ect of revealing exotic two-dimensional topological phenomena with a synthetic dimension. A butterfly-like nontrivial bandstructure associated with the non-Hermitian physics involving strong long-range interactions has been discovered. It leads to pairs of topologically-protected edge states, which exhibit the robust super- or subradiance behavior, localized at the boundaries of the atomic arrays. This work opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions pointing to potential implications for quantum sensing as well as the super-resolution imaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا