ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - Yang Zhou , Xi Zou , Lu You 2013
By using piezoelectric force microscopy and scanning Kelvin probe microscopy, we have investigated the domain evolution and space charge distribution in planar BiFeO3 capacitors with different electrodes. It is observed that charge injection at the f ilm/electrode interface leads to domain pinning and polarization fatigue in BiFeO3. Furthermore, the Schottky barrier at the interface is crucial for the charge injection process. Lowering the Schottky barrier by using low work function metals as the electrodes can also improve the fatigue property of the device, similar to what oxide electrodes can achieve.
137 - Zuhuang Chen , Xi Zou , Wei Ren 2012
Epitaxial strain plays an important role in determining physical properties of perovskite ferroelectric oxide thin films. However, it is very challenging to directly measure properties such as polarization in ultrathin strained films using traditiona l sandwich capacitor devices, because of high leakage current. We employed a planar electrode device with different crystallographical orientations between electrodes along different electric field orientation to directly measure the in-plane polarization-electric field (P-E) hysteresis loops in fully strained thin films. At high misfit strains such as -4.4%, the pure Tetrogonal-like phase is obtained and its polarization vector is constrained to lie in the (010) plane with a significantly large in-plane component, ~44 {mu}C/cm2. First-principle calculations are carried out in parallel, and provide a good agreement with the experimental results. Our results pave the way to design in-plane devices based on T-like BFO and the strategy proposed here can be expanded to study all other similar strained multiferroic ultrathin films.
91 - Lu You , Shintaro Yasui , Xi Zou 2012
The structural and ferroelectric domain variants of highly-strained BiFeO3 films grown on vicinal LaSrAlO4 substrates were studied by piezoelectric force microscopy and high-resolution X-ray reciprocal space mapping. Through symmetry breaking of the substrate surface, ferroelastic domain variants in the highly-strained MC phase BiFeO3 can be greatly reduced. Single-domain film can be obtained on substrates with large miscut angle, which is accompanied by the reduction of structural variants in the mixed-phase nanodomains. These findings lead to better understanding of the phase evolution and polarization rotation process in the strain-driven morphotropic phase system.
75 - Lu You , Zuhuang Chen , Xi Zou 2011
The novel strain-driven morphotropic phase boundary (MPB) in highly-strained BiFeO3 thin film is featured by ordered mixed phase nanodomains (MPNs). Through scanning probe microscopy and synchrotron X-ray diffraction, eight structural variants of the MPNs are identified. Detailed polarization configurations within the MPNs are resolved using angular-dependent piezoelectric force microscopy. Guided by the obtained results, deterministic manipulation of the MPNs has been demonstrated by controlling the motion of the local probe. These findings are important for in-depth understanding of the ultrahigh electromechanical response arising from phase transformation between competing phases, enabling future explorations on the electronic structure, magnetoelectricity and other functionalities in this new MPB system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا