ترغب بنشر مسار تعليمي؟ اضغط هنا

We construct perturbatively controlled non-Fermi liquids in 3+1 spacetime dimensions, using mild power-law translation breaking interactions. Our mechanism balances the leading tree level effects from such gradients against quantum effects from the i nteraction between the Fermi surface and a critical boson. We exhibit this in a model where finite density fermions interact with a scalar field via a Yukawa coupling of the form $g(x)propto |x|^kappa$. The approximate non-Fermi liquid behavior arises in the limit of small $kappa$ and persists over an exponentially large window of scales, being cut off by the regime where the coupling becomes large, or by superconducting instabilities. The translation breaking coupling introduces anisotropic deformations of the Fermi surface depending on the direction of the gradient. An extension of this mechanism to 2+1 dimensions could provide a strongly translation-breaking, but weakly coupled non-fermi liquid, something we leave for further work.
The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and numerically in all three dimensions. Our investigation shows that the sound speed depends strongly on the strength of the lattice. In the one-dime nsional case, the speed of sound falls monotonically with increasing lattice strength. The dependence on lattice strength becomes much richer in two and three dimensions. In the two-dimensional case, when the interaction is weak, the sound speed first increases then decreases as the lattice strength increases. For the three dimensional lattice, the sound speed can even oscillate with the lattice strength. These rich behaviors can be understood in terms of compressibility and effective mass. Our analytical results at the limit of weak lattices also offer an interesting perspective to the understanding: they show the lattice component perpendicular to the sound propagation increases the sound speed while the lattice components parallel to the propagation decreases the sound speed. The various dependence of the sound speed on the lattice strength is the result of this competition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا