ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - H.Dong , X.F. Liu , C.P. Sun 2009
The thermodynamic influence of quantum probing on an object is studied. Here, quantum probing is understood as a pre-measurement based on a non-demolition interaction, which records some information of the probed object, but does not change its energ y state when both the probing apparatus and the probed object are isolated from the environment. It is argued that when the probing apparatus and the probed object are immersed in a same equilibrium environment, the probing can affect the effective temperature of the object or induce a quantum isothermal process for the object to transfer its energy. This thermodynamic feature can be regarded as a witness of the existence of quantum probing even if the quantum probing would not disturb the object if the environment were not present.
45 - H.Dong , Qing-yu Cai , X.F. Liu 2009
For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external qualities (e.g., the mass for the Schw arzschild black hole) and the energy of the radiated particle. This postulate is justified by the WKB approximation for calculating the tunneling probability. Based on this postulate, a general formula for the tunneling probability is derived without referring to the concrete form of black hole metric. This formula implies an intrinsic correlation between the successive processes of the black hole radiation of two or more particles. It also suggests a kind of entropy conservation and thus resolves the puzzle of black hole information loss in some sense.
198 - H. Dong , X.F. Liu , H.C. Fu 2007
This is the second one in our series of papers on indirect quantum control assisted by quantum accessor. In this paper we propose and study a new class of indirect quantum control(IDQC) scheme based on the initial states preparation of the accessor. In the present scheme, after the initial state of the accessor is properly prepared, the system is controlled by repeatedly switching on and off the interaction between the system and the accessor. This is different from the protocol of our first paper, where we manipulate the interaction between the controlled system and the accessor. We prove the controllability of the controlled system for the proposed indirect control scheme. Furthermore, we give an example with two coupled spins qubits to illustrate the scheme, the concrete control process and the controllability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا