ترغب بنشر مسار تعليمي؟ اضغط هنا

161 - X. L. Xu 2014
Phase space matching between two plasma-accelerator (PA) stages and between a PA and a traditional accelerator component is a critical issue for emittance preservation of beams accelerated by PAs. The drastic differences of the transverse focusing st rengths as the beam propagates between different stages and components may lead to a catastrophic emittance growth in the presence of both finite energy spread and lack of proper matching. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to provide exact phase space matching to properly transport the electron beam through two such stages with negligible emittance growth. Theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained.
187 - X. L. Xu 2014
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity $I$, lasers with longer/shorter wavelength $lambda$ have larger/smaller ponderomotive potential ($propto I lambda^2$). The two color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g. a $10 micrometer$ CO$_2$ laser) due to its very large ponderomotive potential. On the other hand, short wavelength laser can produce electrons with very small residual momenta ($p_perpsim a_0sim sqrt{I}lambda$) inside the wake, leading to electron beams with very small normalized emittances (tens of $ anometer$). Using particle-in-cell simulations we show that a $sim10 femtosecond$ electron beam with $sim4 picocoulomb$ of charge and a normalized emittance of $sim 50 anometer$ can be generated by combining a 10 $micrometer $ driving laser with a 400 $ anometer$ injection laser, which is an improvement of more than one order of magnitude compared to the typical results obtained when a single wavelength laser used for both the wake formation and ionization injection.
148 - X. L. Xu 2013
The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially t o a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.
100 - F. Li 2013
The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.
We perform high-resolution photocurrent (PC) spectroscopy to investigate resonantly the neutral exciton ground-state (X0) in a single InAs/GaAs self-assembled quantum dot (QD) embedded in the intrinsic region of an n-i-Schottky photodiode based on a two-dimensional electron gas (2DEG), which was formed from a Si delta-doped GaAs layer. Using such a device, a single-QD PC spectrum of X0 is measured by sweeping the bias-dependent X0 transition energy through that of a fixed narrow-bandwidth laser via the quantum-confined Stark effect (QCSE). By repeating such a measurement for a series of laser energies, a precise relationship between the X0 transition energy and bias voltage is then obtained. Taking into account power broadening of the X0 absorption peak, this allows for high-resolution measurements of the X0 homogeneous linewidth and, hence, the electron tunnelling rate. The electron tunnelling rate is measured as a function of the vertical electric field and described accurately by a theoretical model, yielding information about the electron confinement energy and QD height. We demonstrate that our devices can operate as 2DEG-based QD photovoltaic cells and conclude by proposing two optical spintronic devices that are now feasible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا