ترغب بنشر مسار تعليمي؟ اضغط هنا

The process $e^+e^- to gammachi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^- $ collider. No significant signal is observed except from $psi(2S)$ decays. Upper limits on the cross sections between $sqrt{s}=3.80$ and $5.56~{rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$psi(4040$), $psi(4160)$, and $psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $gammachi_{cJ}$.
We report measurement of the cross section of $e^+e^-to pi^+pi^-psi(2S)$ between 4.0 and $5.5 {rm GeV}$, based on an analysis of initial state radiation events in a $980 rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $pi^+pi^-psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347pm 6pm 3) {rm MeV}/c^2$, $Gamma_{Y(4360)} = (103pm 9pm 5) {rm MeV}$, $M_{Y(4660)} = (4652pm10pm 8) {rm MeV}/c^2$, $Gamma_{Y(4660)} = (68pm 11pm 1) rm MeV$; and ${cal{B}}[Y(4360)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4360)}^{e^+e^-} = (10.9pm 0.6pm 0.7) rm eV$ and ${cal{B}}[Y(4660)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4660)}^{e^+e^-} = (8.1pm 1.1pm 0.5) rm eV$ for one solution; or ${cal{B}}[Y(4360)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4360)}^{e^+e^-} = (9.2pm 0.6pm 0.6) rm eV$ and ${cal{B}}[Y(4660)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4660)}^{e^+e^-} = (2.0pm 0.3pm 0.2) rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {rm GeV}/c^2$ is observed in the $pi^{pm}psi(2S)$ intermediate state in the $Y(4360)$ decays.
Spin filter tunnel junctions are based on selective tunneling of up and down spin electrons controlled through exchange splitting of the band structure of a ferromagnetic insulator. Therefore, spin filter efficiency can be tuned by adjusting exchange strength of the tunnel barrier. We have observed that magnetic field and bias voltage (current) can be used to regulate exchange strength and consequently spin-filter efficiency in tunnel junctions with ferromagnetic DyN and GdN tunnel barrier. In tunnel junctions with DyN barrier we obtained $sim$37$%$ spin polarization of tunneling electrons at 11 K due to a small exchange splitting ($ E_{ex}$) $approx$5.6 meV of the barrier height ($Phi _0$) $approx$60 meV. Huge spin-filter efficiency $sim$97$%$ was found for tunnel junctions with GdN barrier due to larger $E_{ex}$ $approx$47 meV. In the presence of an applied magnetic field, barrier height can further split due to magnetic field dependent exchange splitting $ E_{ex}(H)$. The spin filter efficiency in DyN tunnel junctions can be increased up to $sim$87$%$ with magnetic field. Electric and magnetic field tuned spin-filter efficiency of these tunnel junctions gives opportunity for practical application of these devices with additional functionality.
The cross section for e^+e^- to eta J/psi between sqrt{s}=3.8 GeV/c^2 and 5.3 GeV/c^2 is measured via initial state radiation using 980 fb^{-1} of data on and around the Upsilon(nS)(n=1,2,3,4,5) resonances collected with the Belle detector at KEKB. T wo resonant structures at the psi(4040) and psi(4160) are observed in the eta J/psi invariant mass distribution. Fitting the mass spectrum with the coherent sum of two Breit-Wigner functions, one obtains BR(psi(4040)toeta J/psi)cdotGamma_{ee}^{psi(4040)} = (4.8pm0.9pm1.4) eV and BR(psi(4160)toeta J/psi)cdotGamma_{ee}^{psi(4160)} = (4.0pm0.8pm1.4) eV for one solution and BR(psi(4040)toeta J/psi)cdotGamma_{ee}^{psi(4040)} = (11.2pm1.3pm1.9) eV and BR(psi(4160)toeta J/psi)cdotGamma_{ee}^{psi(4160)} = (13.8pm1.3pm2.0) eV for the other solution, where the first errors are statistical and the second are systematic. This is the first measurement of this hadronic transition mode of these two states, and the partial widths to eta J/psi are found to be about 1 MeV. There is no evidence for the Y(4260), Y(4360), psi(4415), or Y(4660) in the eta J/psi final state, and upper limits of their production rates in e^+e^- annihilation are determined.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا