ترغب بنشر مسار تعليمي؟ اضغط هنا

194 - T. Lin , X. Ke , M. Thesberg 2013
Spin ice materials, such as Dy2Ti2O7 and Ho2Ti2O7, have been the subject of much interest for over the past fifteen years. Their low temperature strongly correlated state can be mapped onto the proton disordered state of common water ice and, consequ ently, spin ices display the same low temperature residual Pauling entropy as water ice. Interestingly, it was found in a previous study [X. Ke {it et. al.} Phys. Rev. Lett. {bf 99}, 137203 (2007)] that, upon dilution of the magnetic rare-earth ions (Dy^{3+} and Ho^{3+}) by non-magnetic Yttrium (Y^{3+}) ions, the residual entropy depends {it non-monotonically} on the concentration of Y^{3+} ions. In the present work, we report results from Monte Carlo simulations of site-diluted microscopic dipolar spin ice models (DSIM) that account quantitatively for the experimental specific heat measurements, and thus also for the residual entropy, as a function of dilution, for both Dy2Ti2O7 and Ho2Ti2O7. The main features of the dilution physics displayed by the magnetic specific heat data are quantitatively captured by the diluted DSIM up to, and including, 85% of the magnetic ions diluted (x=1.7). The previously reported departures in the residual entropy between Dy2Ti2O7 versus Ho2Ti2O7, as well as with a site-dilution variant of Paulings approximation, are thus rationalized through the site-diluted DSIM. For 90% (x=1.8) and 95% (x=1.9) of the magnetic ions diluted, we find a significant discrepancy between the experimental and Monte Carlo specific heat results. We discuss some possible reasons for this disagreement.
143 - T.J. Liu , X. Ke , B. Qian 2009
We have investigated the effect of Fe nonstoichiometry on properties of the Fe1+y(Te, Se) superconductor system by means of resistivity, Hall coefficient, magnetic susceptibility, and specific heat measurements. We find that the excess Fe at intersti tial sites of the (Te, Se) layers not only suppresses superconductivity, but also results in a weakly localized electronic state. We argue that these effects originate from the magnetic coupling between the excess Fe and the adjacent Fe square planar sheets, which favors a short-range magnetic order.
347 - X. Ke , J. Li , C. Nisoli 2008
We study AC demagnetization in frustrated arrays of single-domain ferromagnetic islands, exhaustively resolving every (Ising-like) magnetic degree of freedom in the systems. Although the net moment of the arrays is brought near zero by a protocol wit h sufficiently small step size, the final magnetostatic energy of the demagnetized array continues to decrease for finer-stepped protocols and does not extrapolate to the ground state energy. The resulting complex disordered magnetic state can be described by a maximum-entropy ensemble constrained to satisfy just nearest-neighbor correlations.
Water ice and spin ice are important model systems in which theory can directly account for zero point entropy associated with quenched configurational disorder. Spin ice differs from water ice in the important respect that its fundamental constituen ts, the spins of the magnetic ions, can be removed through replacement with non-magnetic ions while keeping the lattice structure intact. In order to investigate the interplay of frustrated interactions and quenched disorder, we have performed systematic heat capacity measurements on spin ice materials which have been thus diluted up to 90%. Investigations of both Ho and Dy spin ices reveal that the zero point entropy depends non-monotonically on dilution and approaches the value of Rln2 in the limit of high dilution. The data are in good agreement with a generalization of Paulings theory for the entropy of ice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا