ترغب بنشر مسار تعليمي؟ اضغط هنا

334 - B. Lei , Z. J. Xiang , X. F. Lu 2015
The antiferromagnetic(AFM) insulator-superconductor transition has been always a center of interest in the underlying physics of unconventional superconductors. The quantum phase transition between Mott insulator with AFM and superconductor can be in duced by doping charge carriers in high-Tc cuprate superconductors. For the best characterized organic superconductors of k-(BEDT-TTF)2X (X=anion), a first order transition between AFM insulator and superconductor can be tuned by applied external pressure or chemical pressure. Also, the superconducting state can be directly developed from AFM insulator by application of pressure in Cs3C60. The resemblance of these phase diagrams hints a universal mechanism governing the unconventional superconductivity in close proximity to AFM insulators. However, the superconductivity in iron-based high-Tc superconductors evolves from an AFM bad metal by doping charge carriers, and no superconductor-insulator transition has been observed so far. Here, we report a first-order transition from superconductor to insulator with a strong charge doping induced by ionic gating in the thin flakes of single crystal (Li,Fe)OHFeSe. The Tc is continuously enhanced with electron doping by ionic gating up to a maximum Tc of 43 K, and a striking superconductor-insulator transition occurs just at the verge of optimal doping with highest Tc. A novel phase diagram of temperature-gating voltage with the superconductor-insulator transition is mapped out, indicating that the superconductor -insulator transition is a common feature for unconventional superconductivity. These results help to uncover the underlying physics of iron-based superconductivity as well as the universal mechanism of high-Tc superconductivity. Our finding also suggests that the gate-controlled strong charge doping makes it possible to explore novel states of matter in a way beyond traditional methods.
56 - X. F. Lu , N. Z. Wang , H. Wu 2014
FeSe-derived superconductors show some unique behaviors relative to iron-pnictide superconductors, which are very helpful to understand the mechanism of superconductivity in high-Tc iron-based superconductors. The low-energy electronic structure of t he heavily electron-doped AxFe2Se2 (A=K, Rb, Cs) demonstrates that interband scattering or Fermi surface nesting is not a necessary ingredient for the unconventional superconductivity in iron-based superconductors. The superconducting transition temperature (Tc) in the one-unit-cell FeSe on SrTiO3 substrate can reach as high as ~65 K, largely transcending the bulk Tc of all known iron-based superconductors. However, in the case of AxFe2Se2, the inter-grown antiferromagnetic insulating phase makes it difficult to study the underlying physics. Superconductors of alkali metal ions and NH3 molecules or organic-molecules intercalated FeSe and single layer or thin film FeSe on SrTiO3 substrate are extremely air-sensitive, which prevents the further investigation of their physical properties. Therefore, it is urgent to find a stable and accessible FeSe-derived superconductor for physical property measurements so as to study the underlying mechanism of superconductivity. Here, we report the air-stable superconductor (Li0.8Fe0.2)OHFeSe with high temperature superconductivity at ~40 K synthesized by a novel hydrothermal method. The crystal structure is unambiguously determined by the combination of X-ray and neutron powder diffraction and nuclear magnetic resonance. It is also found that an antiferromagnetic order coexists with superconductivity in such new FeSe-derived superconductor. This novel synthetic route opens a new avenue for exploring other superconductors in the related systems. The combination of different structure characterization techniques helps to complementarily determine and understand the details of the complicated structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا