ترغب بنشر مسار تعليمي؟ اضغط هنا

262 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M ott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
60 - X. D. Zhu , J. C. Lu , Y. P. Sun 2010
The magnetization and anisotropic electrical transport properties have been measured in high quality Cu0.03TaS2 single crystal. A pronounced peak effect has been observed, indicating that the high quality and homogeneity are vital to peak effect. A k ink has been observed in the magnetic field H dependence of the in-plane resistivity {rho}ab for H || c, which corresponds to a transition from activated to diffusive behavior of vortex liquid phase. In the diffusive regime of the vortex liquid phase, the in-plane resistivity {rho}ab shows {rho}ab $propto$ H0.3 relation, which does not follow the Bardeen-Stephen law for free flux flow. Finally, a simplified vortex phase diagram of Cu0.03TaS2 for H || c is given.
The anisotropic superconducting state properties in Cu0.03TaS2 have been investigated by magnetization, magnetoresistance, and specific heat measurements. It clearly shows that Cu0.03TaS2 undergoes a superconducting transition at TC = 4.03 K. The obt ained superconducting parameters demonstrate that Cu0.03TaS2 is an anisotropic type-II superconductor. Combining specific heat jump = 1.6(4), gap ratio 2/kBTC = 4.0(9) and the estimated electron-phonon coupling constant ~ 0.68, the superconductivity in Cu0.03TaS2 is explained within the intermediate coupling BCS scenario. First-principles electronic structure calculations suggest that copper intercalation of 2H-TaS2 causes a considerable increase of the Fermi surface volume and the carrier density, which suppresses the CDW fluctuation and favors the raise of TC.
Single crystals FeSe_x have been grown in evacuated sealed quartz tube using a NaCl/KCl flux. The products include two crystal structures of tetragon and hexagon. The electronic transport and magnetic properties measurements of FeSe_x single crystal exhibits a superconducting transition at about 10K.
91 - X. D. Zhu , Y. P. Sun , X. B. Zhu 2008
Single crystal of Cu0.03TaS2 with low copper intercalated content was successfully grown via chemical iodine-vapor transport. The structural characterization results show that the copper intercalated 2H-Cu0.03TaS2 single crystal has the same structur e of the CdI2-type structure as the parent 2H-TaS2 crystal. Electrical resistivity and magnetization measurements reveal that 2H-Cu0.03TaS2 becomes a superconductor below 4.2 K. Besides, electrical resistivity and Hall effects results show that a charge density wave transition occurs at TCDW = 50 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا