ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - P. Figueira 2010
Context. The young active star BD +20 1790 is believed to host a substellar companion, revealed by radial-velocity measurements that detected the reflex motion induced on the parent star. Aims. A complete characterisation of the radial-velocity sig nal is necessary in order to assess its nature. Methods. We used CORALIE spectrograph to obtain precise (~10 m/s) velocity measurements on this active star, while characterizing the bisector span variations. Particular attention was given to correctly sample both the proposed planetary orbital period, of 7.8 days, and the stellar rotation period, of 2.4 days. Results. A smaller radial-velocity signal (with peak-to-peak variations <500 m/s) than had been reported previously was detected, with different amplitude on two different campaigns. A periodicity similar to the rotational period is found on the data, as well as a clear correlation between radial-velocities and bisector span. This evidence points towards a stellar origin of the radial-velocity variations of the star instead of a barycentric movement of the star, and repudiates the reported detection of a hot-Jupiter.
Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal th e transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
88 - S. Udry 2007
This Letter reports on the detection of two super-Earth planets in the Gl581 system, already known to harbour a hot Neptune. One of the planets has a mass of 5 M_Earth and resides at the ``warm edge of the habitable zone of the star. It is thus the k nown exoplanet which most resembles our own Earth. The other planet has a 7.7 M_Earth mass and orbits at 0.25 AU from the star, close to the ``cold edge of the habitable zone. These two new light planets around an M3 dwarf further confirm the formerly tentative statistical trend for i) many more very low-mass planets being found around M dwarfs than around solar-type stars and ii) low-mass planets outnumbering Jovian planets around M dwarfs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا