ترغب بنشر مسار تعليمي؟ اضغط هنا

436 - G. W. Lin , X. B. Zou , X. M. Lin 2013
We propose a scheme to implement a heralded quantum memory for single-photon polarization qubits with a single atom trapped in an optical cavity. In this scheme, an injected photon only exchanges quantum state with the atom, so that the heralded stor age can be achieved by detecting the output photon. We also demonstrate that the scheme can be used for realizing the heralded quantum state transfer, exchange and entanglement distribution between distant nodes. The ability to detect whether the operation has succeeded or not is crucial for practical application.
We propose a linear compression technique for the time interval distribution of photon pairs. Using a partially frequency-entangled two-photon (TP) state with appropriate mean time width, the compressed TP time interval width can be kept in the minim um limit set by the phase modulation, and is independent of its initial width. As a result of this effect, ultra-narrow TP time interval distribution can be compressed with relatively slow phase modulators to decrease the damage of the phase-instability arising from the phase modulation process.
373 - G. W. Lin , X. B. Zou , X. M. Lin 2009
We propose an efficient method to realize a large-scale one-way quantum computer in a two-dimensional (2D) array of coupled cavities, based on coherent displacements of an arbitrary state of cavity fields in a closed phase space. Due to the nontrivia l geometric phase shifts accumulating only between the qubits in nearest-neighbor cavities, a large-scale 2D cluster state can be created within a short time. We discuss the feasibility of our method for scale solid-state quantum computation
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا