ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the spatially resolved observations of IRAS sources from the Japanese infrared astronomy satellite AKARI All-Sky Survey during the performance verification (PV) phase of the mission. We extracted reliable point sources matched with IRAS po int source catalogue. By comparing IRAS and AKARI fluxes, we found that the flux measurements of some IRAS sources could have been over or underestimated and affected by the local background rather than the global background. We also found possible candidates for new AKARI sources and confirmed that AKARI observations resolved IRAS sources into multiple sources. All-Sky Survey observations are expected to verify the accuracies of IRAS flux measurements and to find new extragalactic point sources.
We investigate the segregation of the extragalactic population via colour criteria to produce an efficient and inexpensive methodology to select specific source populations as a function of far-infrared flux. Combining galaxy evolution scenarios and a detailed spectral library of galaxies, we produce simulated catalogues incorporating segregation of the extragalactic population into component types (Normal, star-forming, AGN) via color cuts. As a practical application we apply our criteria to the deepest survey to be undertaken in the far-infrared with the AKARI (formerly ASTRO-F) satellite. Using the far-infrared wavebands of the Far-Infrared Surveyor (FIS, one of the focal-plane instruments on AKARI) we successfully segregate the normal, starburst and ULIRG populations. We also show that with additional MIR imaging from AKARIs Infrared Camera (IRC), significant contamination and/or degeneracy can be further decreased and show a particular example of the separation of cool normal galaxies and cold ULIRG sources. We conclude that our criteria provide an efficient means of selecting source populations (including rare luminous objects) and produce colour-segregated source counts without the requirement of time intensive ground-based follow up to differentiate between the general galaxy population.
241 - Woong-Seob Jeong 2007
The Cosmic Far-Infrared Background (CFIRB) contains information about the number and distribution of contributing sources and thus gives us an important key to understand the evolution of galaxies. Using a confusion study to set a fundamental limit t o the observations, we investigate the potential to explore the CFIRB with AKARI/FIS deep observations. The Far-Infrared Surveyor (FIS) is one of the focal-plane instruments on the AKARI (formerly known as ASTRO-F) satellite, which was launched in early 2006. Based upon source distribution models assuming three different cosmological evolutionary scenarios (no evolution, weak evolution, and strong evolution), an extensive model for diffuse emission from infrared cirrus, and instrumental noise estimates, we present a comprehensive analysis for the determination of the confusion levels for deep far-infrared observations. We use our derived sensitivities to suggest the best observational strategy for the AKARI/FIS mission to detect the CFIRB fluctuations. If the source distribution follows the evolutionary models, observations will be mostly limited by source confusion. We find that we will be able to detect the CFIRB fluctuations and that these will in turn provide information to discriminate between the evolutionary scenarios of galaxies in most low-to-medium cirrus regions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا