ترغب بنشر مسار تعليمي؟ اضغط هنا

SrTiO$_3$ is a promising $n$-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO$_3$ doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition (PLD). The thermoelectric and galva nomagnetic properties of these films have been characterized at temperatures ranging from 300 K to 900 K and are typical of a doped semiconductor. Thermopower values of double-doped films are comparable to previous studies of La doped single crystals at similar carrier concentrations. The highest thermoelectric figure of merit ($ZT$) was measured to be 0.28 at 873 K at a carrier concentration of $2.5times10^{21}$ cm$^{-3}$.
Monoclinic CuO is anomalous both structurally as well as electronically in the 3$d$ transition metal oxide series. All the others have the cubic rock salt structure. Here we report the synthesis and electronic property determination of a tetragonal ( elongated rock salt) form of CuO created using an epitaxial thin film deposition approach. In situ photoelectron spectroscopy suggests an enhanced charge transfer gap $Delta$ with the overall bonding more ionic. As an end member of the 3d transition monoxides, its magnetic properties should be that of a high $T_N$ antiferromagnet.
We demonstrate that SrRuO3 and CaRuO3 thin films undergo a room temperature structural phase transition driven by the substrate imposed epitaxial biaxial strain. As tensile strain increases, ARuO3 (A=Ca, Sr) films transform from the orthorhombic phas e which is usually observed in bulk SrRuO3 and CaRuO3 at room temperature, into a tetragonal phase which in bulk samples is only stable at higher temperatures. More importantly, we show that the observed phenomenon strongly affects the electronic and magnetic properties of ARuO3 thin films that are grown on different single crystal substrates which in turn offers the possibility to tune these properties.
Temperature dependent structural phase transitions of SrRuO3 thin films epitaxially grown on SrTiO3(001) single crystal substrates have been studied using high-resolution x-ray diffraction. In contrast to bulk SrRuO3, coherently strained epitaxial la yers do not display cubic symmetry up to ~730 oC and remain tetragonal. Such behavior is believed to be induced by compressive strain between the SrRuO3 layer and SrTiO3 substrate due to lattice mismatch. The tetragonal symmetry during growth explains the single domain growth on miscut SrTiO3 substrates with step edges running along the [100] or [010] direction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا