ترغب بنشر مسار تعليمي؟ اضغط هنا

At the distance of 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. We observed the fine-structure lines of OI at 63 and 145 mi cron and the CII line at 157 micron with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 micron, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD141569A, whereas the [CII] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of 2.1E-7 MSun and from grains with a radius of up to 1 cm of 4.9E-6 MSun. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2E-11 and 1..4E-10 MSun assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3E-7) by two to three orders of magnitude. The disk around HD141569A is less massive in gas (2.5 to 4.9E-4 MSun or 67 to 164 MEarth) and has a flat opening angle (<10%). [abridged]
90 - Wing-Fai Thi 2012
The carbon monoxide rovibrational emission from discs around Herbig Ae stars and T Tauri stars with strong ultraviolet emissions suggests that fluorescence pumping from the ground X1 Sigma+ to the electronic A1 Pi state of CO should be taken into acc ount in disc models. We implemented a CO model molecule that includes up to 50 rotational levels within nine vibrational levels for the ground and A excited states in the radiative photochemical code ProDiMo. We took CO collisions with hydrogen molecules, hydrogen atoms, helium, and electrons into account. We estimated the missing collision rates using standard scaling laws and discussed their limitations. UV fluorescence and IR pumping impact on the population of ro-vibrational v > 1 levels. The v = 1 rotational levels are populated at rotational temperatures between the radiation temperature around 4.6 micron and the gas kinetic temperature. The UV pumping efficiency increases with decreasing disc mass. The consequence is that the vibrational temperatures, which measure the relative populations between the vibrational levels, are higher than the disc gas kinetic temperatures (suprathermal population). Rotational temperatures from fundamental transitions derived using optically thick 12CO lines do not reflect the gas kinetic temperature. CO pure rotational levels with energies lower than 1000 K are populated in LTE but are sensitive to a number of vibrational levels included in the model. The 12CO pure rotational lines are highly optically thick for transition from levels up to Eupper=2000 K. (abridged)
Cosmic rays (CRs) control the thermal, ionization and chemical state of the dense H_2 gas regions that otherwise remain shielded from far-UV and optical stellar radiation propagating through the dusty ISM of galaxies. It is in such CR-dominated regio ns (CRDRs) rather than Photon-dominated regions (PDRs) of H_2 clouds where the star formation initial conditions are set, making CRs the ultimate star-formation feedback factor in galaxies, able to operate even in their most deeply dust-enshrouded environments. CR-controlled star formation initial conditions naturally set the stage for a near-invariant stellar Initial Mass Function (IMF) in galaxies as long as their average CR energy density U_{CR} permeating their molecular ISM remains within a factor of ~10 of its Galactic value. Nevertheless, in the extreme environments of the compact starbursts found in merging galaxies, where U_{CR}sim(few)x10^{3}U_{CR,Gal}, CRs dramatically alter the initial conditions of star formation. In the resulting extreme CRDRs H_2 cloud fragmentation will produce far fewer low mass (<8 M_{sol}) stars, yielding a top-heavy stellar IMF. This will be a generic feature of CR-controlled star-formation initial conditions, lending a physical base for a bimodal IMF during galaxy formation, with a top-heavy one for compact merger-induced starbursts, and an ordinary IMF preserved for star formation in isolated gas-rich disks. In this scheme the integrated galactic IMFs (IGIMF) are expected to be strong functions of the star formation history of galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا