ترغب بنشر مسار تعليمي؟ اضغط هنا

A proposal for a phase gate and a M{o}lmer-S{o}rensen (MS) gate in the dressed state basis is presented. In order to perform the multi-qubit interaction, a strong magnetic field gradient is required to couple the phonon-bus to the qubit states. The g ate is performed using resonant microwave driving fields together with either a radio-frequency (RF) driving field, or additional detuned microwave driving fields. The gate is robust to ambient magnetic field fluctuations due to an applied resonant microwave driving field. Furthermore, the gate is robust to fluctuations in the microwave Rabi frequency and is decoupled from phonon dephasing due to a resonant RF or a detuned microwave driving field. This makes this new gate an attractive candidate for the implementation of high-fidelity microwave based multi-qubit gates. The proposal can also be realized in laser-based set-ups.
For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recom bination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic.
We demonstrate a simple technique to measure the resonant frequency of the 398.9 nm 1S0 - 1P1 transition for the different Yb isotopes. The technique, that works by observing and aligning fluorescence spots, has enabled us to measure transition frequ encies and isotope shifts with an accuracy of 60 MHz. We provide wavelength measurements for the transition that differ from previously published work. Our technique also allows for the determination of Doppler shifted transition frequencies for photoionisation experiments when the atomic beam and laser beam are not perpendicular and furthermore allows us to determine the average velocity of the atoms along the direction of atomic beam.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا