ترغب بنشر مسار تعليمي؟ اضغط هنا

The polaronic system consisting of an impurity in a dilute Bose-Einstein condensate is considered in the presence of a narrow Feshbach resonance. For this purpose a coupled-channel model is used, which at the mean field level predicts the formation o f quasiparticles that are a superposition of the impurity and the molecular states. The impurity-boson interactions and the coupling between the open and closed channels are then considered weak and a perturbative calculation of the corrections to the mean field results is presented. This allows to examine the properties of the quasiparticles, such as the lifetime and the effective mass. The model is applied to two physical systems: an impurity atom in a Bose-condensed atomic gas in 3D and a spin down lower polariton in a Bose-Einstein condensate of spin up lower polaritons in 2D. The model parameters are linked to the physical parameters by identifying the low energy T-matrix and applying a proper renormalization scheme.
We consider two large polaron systems that are described by a Fr{o}hlich type of Hamiltonian, namely the Bose-Einstein condensate (BEC) polaron in the continuum and the acoustic polaron in a solid. We present ground-state energies of these two system s calculated with the Diagrammatic Monte Carlo (DiagMC) method and with a Feynman all-coupling approach. The DiagMC method evaluates up to very high order a diagrammatic series for the polaron Greens function. The Feynman all-coupling approach is a variational method that has been used for a wide range of polaronic problems. For the acoustic and BEC polaron both methods provide remarkably similar non-renormalized ground-state energies that are obtained after introducing a finite momentum cutoff. For the renormalized ground-state energies of the BEC polaron, there are relatively large discrepancies between the DiagMC and the Feynman predictions. These differences can be attributed to the renormalization procedure for the contact interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا