ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kepler-36 system consists of two planets that are spaced unusually close together, near the 7:6 mean motion resonance. While it is known that mean motion resonances can easily form by convergent migration, Kepler-36 is an extreme case due to the close spacing and the relatively high planet masses of 4 and 8 times that of the Earth. In this paper, we investigate whether such a system can be obtained by interactions with the protoplanetary disc. These discs are thought to be turbulent and exhibit density fluctuations which might originate from the magneto-rotational instability. We adopt a realistic description for stochastic forces due to these density fluctuations and perform both long term hydrodynamical and N-body simulations. Our results show that planets in the Kepler-36 mass range can be naturally assembled into a closely spaced planetary system for a wide range of migration parameters in a turbulent disc similar to the minimum mass solar nebula. The final orbits of our formation scenarios tend to be Lagrange stable, even though large parts of the parameter space are chaotic and unstable.
84 - Willy Kley 2007
Among the extrasolar planetary systems about 30 are located in a stellar binary orbiting one of the stars, preferably the more massive primary. The dynamical influence of the second companion alters firstly the orbital elements of the forming protopl anet directly and secondly the structure of the disk from which the planet formed which in turn will modify the planets evolution. We present detailed analysis of these effects and present new hydrodynamical simulations of the evolution of protoplanets embedded in circumstellar disks in the presence of a companion star, and compare our results to the system $gamma$ Cep. To analyse the early formation of planetary embryos, we follow the evolution of a swarm of planetesimals embedded in a circumstellar disk. Finally, we study the evolution of planets embedded in circumbinary disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا