ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we introduce the use of recently developed min/max-plus techniques in order to solve the optimal attitude estimation problem in filtering for nonlinear systems on the special orthogonal (SO(3)) group. This work helps obtain computatio nally efficient methods for the synthesis of deterministic filters for nonlinear systems -- i.e. optimal filters which estimate the state using a related optimal control problem. The technique indicated herein is validated using a set of optimal attitude estimation example problems on SO(3).
This article approaches deterministic filtering via an application of the min-plus linearity of the corresponding dynamic programming operator. This filter design method yields a set-valued state estimator for discrete-time nonlinear systems (nonline ar dynamics and output functions). The energy bounds in the process and the measurement disturbances are modeled using a sum quadratic constraint. The filtering problem is recast into an optimal control problem in the form of a Hamilton-Jacobi-Bellman (HJB) equation, the solution to which is obtained by employing the min-plus linearity property of the dynamic programming operator. This approach enables the solution to the HJB equation and the design of the filter without recourse to linearization of the system dynamics/ output equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا