ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a mass determination for the transiting super-Earth rho 1 Cancri e based on nearly 700 precise radial velocity (RV) measurements. This extensive RV data set consists of data collected by the McDonald Observatory planet search and published data from Lick and Keck observatories (Fischer et al. 2008). We obtained 212 RV measurements with the Tull Coude Spectrograph at the Harlan J. Smith 2.7 m Telescope and combined them with a new Doppler reduction of the 131 spectra that we have taken in 2003-2004 with the High-Resolution-Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) for the original discovery of rho 1 Cancri e. Using this large data set we obtain a 5-planet Keplerian orbital solution for the system and measure an RV semi-amplitude of K = 6.29 +/- 0.21 m/s for rho 1 Cnc e and determine a mass of 8.37 +/- 0.38 M_Earth. The uncertainty in mass is thus less than 5%. This planet was previously found to transit its parent star (Winn et al. 2011, Demory et al. 2011), which allowed them to estimate its radius. Combined with the latest radius estimate from Gillon et al. (2012), we obtain a mean density of rho = 4.50 +/- 0.20 g/cm^3. The location of rho 1 Cnc e in the mass-radius diagram suggests that the planet contains a significant amount of volitales, possibly a water-rich envelope surrounding a rocky core.
We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars - HD 79498, HD 155358, HD 197037, and HD 220773 - taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence o f Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system, and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.
We report the detection of three transiting planets around a Sunlike star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations, radial-velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97M_sun, radius 1.1R_sun, effective temperature 5345K, and iron abundance [Fe/H]= +0.19. The planets have orbital periods of approximately 3.5, 7.6 and 14.9 days. The innermost planet b is a super-Earth with mass 6.9 pm 3.4M_earth, radius 2.00 pm 0.10R_earth, and mean density 4.9 pm 2.4 g cm^-3. The two outer planets c and d are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 pm 1.9M_earth, radius 5.49 pm 0.26R_earth, and mean density 0.59 pm 0.07 g cm^-3, while Kepler-18d has a mass of 16.4 pm 1.4M_earth, radius 6.98 pm 0.33R_earth, and mean density 0.27 pm 0.03 g cm^-3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected transit timing variations.
We report the discovery of Kepler-15b, a new transiting exoplanet detected by NASAs Kepler mission. The transit signal with a period of 4.94 days was detected in the quarter 1 (Q1) Kepler photometry. For the first time, we have used the High-Resoluti on-Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) to determine the mass of a Kepler planet via precise radial velocity (RV) measurements. The 24 HET/HRS radial velocities (RV) and 6 additional measurements from the FIES spectrograph at the Nordic Optical Telescope (NOT) reveal a Doppler signal with the same period and phase as the transit ephemeris. We used one HET/HRS spectrum of Kepler-15 taken without the iodine cell to determine accurate stellar parameters. The host star is a metal-rich ([Fe/H]=0.36+/-0.07) G-type main sequence star with T_eff=5515+/-124 K. The amplitude of the RV-orbit yields a mass of the planet of 0.66+/-0.1 M_Jup. The planet has a radius of 0.96+/-0.06 R_Jup and a mean bulk density of 0.9+/-0.2 g/cm^3. The planetary radius resides on the lower envelope for transiting planets with similar mass and irradiation level. This suggests significant enrichment of the planet with heavy elements. We estimate a heavy element mass of 30-40 M_Earth within Kepler-15b.
The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.
We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planets mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.
We report the detection of a planetary companion with a minimum mass of m sin i = 0.0771 M_Jup = 24.5 M_Earth to the nearby (d = 9.4 pc) M2.5V star GJ 176. The star was observed as part of our M dwarf planet search at the Hobby-Eberly Telescope (HET) . The detection is based on 5 years of high-precision differential radial velocity (RV) measurements using the High-Resolution-Spectrograph (HRS). The orbital period of the planet is 10.24 d. GJ 176 thus joins the small (but increasing) sample of M dwarfs hosting short-periodic planets with minimum masses in the Neptune-mass range. Low mass planets could be relatively common around M dwarfs and the current detections might represent the tip of a rocky planet population.
We report the detection of two planetary mass companions to the solar-type star HD 155358. The two planets have orbital periods of 195.0 and 530.3 days, with eccentricities of 0.11 and 0.18. The minimum masses for these planets are 0.89 and 0.50 Jupi ter masses respectively. The orbits are close enough to each other, and the planets are sufficiently massive, that the planets are gravitationally interacting with each other, with their eccentricities and arguments of periastron varying with periods of 2300--2700 years. While large uncertainties remain in the orbital eccentricities, our orbital integration calculations indicate that our derived orbits would be dynamically stable for at least 10^8 years. With a metallicity [Fe/H] of -0.68, HD 155358 is tied with the K1III giant planet host star HD 47536 for the lowest metallicity of any planet host star yet found. Thus, a star with only 21% of the heavy-element content of our Sun was still able to form a system of at least two Jovian-mass planets and have their orbits evolve to semi-major axes of 0.6-1.2 AU.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا