ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new results from BRAVA, a large scale radial velocity survey of the Galactic bulge, using M giant stars selected from the Two Micron All Sky Survey catalogue as targets for the Cerro Tololo Inter-American Observatory 4m Hydra multi-object spectrograph. The purpose of this survey is to construct a new generation of self-consistent bar models that conform to these observations. We report the dynamics for fields at the edge of the Galactic bulge at latitudes b=-8 deg. and compare to the dynamics at b=-4 deg. We find that the rotation curve V(r) is the same at b=-8 deg. as at b=-4 deg. That is, the Galactic boxy bulge rotates cylindrically, as do boxy bulges of other galaxies. The summed line of sight velocity distribution at b=-8 deg. is Gaussian, and the binned longitude-velocity plot shows no evidence for either a (disk) population with cold dynamics or for a (classical bulge) population with hot dynamics. The observed kinematics are well modeled by an edge-on N-body bar, in agreement with published structural evidence. Our kinematic observations indicate that the Galactic bulge is a prototypical product of secular evolution in galaxy disks, in contrast with stellar population results that are most easily understood if major mergers were the dominant formation process.
We present stellar proper motions in the Galactic bulge from the Sagittarius Window Eclipsing Extrasolar Search (SWEEPS) project using ACS/WFC on HST. Proper motions are extracted for more than 180,000 objects, with >81,000 measured to accuracy bette r than 0.3 mas/yr in both coordinates. We report several results based on these measurements: 1. Kinematic separation of bulge from disk allows a sample of >15,000 bulge objects to be extracted based on >6-sigma detections of proper motion, with <0.2% contamination from the disk. This includes the first detection of a candidate bulge Blue Straggler population. 2. Armed with a photometric distance modulus on a star by star basis, and using the large number of stars with high-quality proper motion measurements to overcome intrinsic scatter, we dissect the kinematic properties of the bulge as a function of distance along the line of sight. This allows us to extract the stellar circular speed curve from proper motions alone, which we compare with the circular speed curve obtained from radial velocities. 3. We trace the variation of the {l,b} velocity ellipse as a function of depth. 4. Finally, we use the density-weighted {l,b} proper motion ellipse produced from the tracer stars to assess the kinematic membership of the sixteen transiting planet candidates discovered in the Sagittarius Window; the kinematic distribution of the planet candidates is consistent with that of the disk and bulge stellar populations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا