ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic resonance alignment tuning is performed in high-order series coupled microring filters using a feedback system. By inputting only a reference wavelength, a filter is tuned such that passband ripples are dramatically reduced compared to the initial detuned state and the passband becomes centered at the reference. The method is tested on 5th order microring filters fabricated in a standard silicon photonics foundry process. Repeatable tuning is demonstrated for filters on multiple dies from the wafer and for arbitrary reference wavelengths within the free spectral range of the microrings.
Microring optical modulators are being explored extensively for energy-efficient photonic communication networks in future high-performance computing systems and microprocessors, because they can significantly reduce the power consumption of optical transmitters via the resonant circulation of light. However, resonant modulators have traditionally suffered from a trade-off between their power consumption and maximum operation bit rate, which were thought to depend oppositely upon the cavity linewidth. Here, we break this linewidth limitation using a silicon microring. By controlling the rate at which light enters and exits the microring, we demonstrate modulation free of the parasitic cavity linewidth limitations at up to 40 GHz, more than 6x the cavity linewidth. The device operated at 28 Gb/s using single-ended drive signals less than 1.5 V. The results show that high-Q resonant modulators can be designed to be simultaneously low-power and high-speed, features which are mutually incompatible in typical resonant modulators studied to date.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا