ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a calibration of the fundamental plane using SDSS Data Release 8. We analysed about 93000 elliptical galaxies up to $z<0.2$, the largest sample used for the calibration of the fundamental plane so far. We incorporated up-to-date K-correcti ons and used GalaxyZoo data to classify the galaxies in our sample. We derived independent fundamental plane fits in all five Sloan filters u, g, r, i and z. A direct fit using a volume-weighted least-squares method was applied to obtain the coefficients of the fundamental plane, which implicitly corrects for the Malmquist bias. We achieved an accuracy of 15% for the fundamental plane as a distance indicator. We provide a detailed discussion on the calibrations and their influence on the resulting fits. These re-calibrated fundamental plane relations form a well-suited anchor for large-scale peculiar-velocity studies in the nearby universe. In addition to the fundamental plane, we discuss the redshift distribution of the elliptical galaxies and their global parameters.
Fossil galaxy groups are speculated to be old and highly evolved systems of galaxies that formed early in the universe and had enough time to deplete their $L^{*}$ galaxies through successive mergers of member galaxies, building up one massive centra l elliptical, but retaining the group X-ray halo. Considering that fossils are the remnants of mergers in ordinary groups, the merger history of the progenitor group is expected to be imprinted in the fossil central galaxy (FCG). We present for the first time radial gradients of single-stellar population (SSP) ages and metallicites in a sample of FCGs to constrain their formation scenario. Our sample comprises some of the most massive galaxies in the universe exhibiting an average central velocity dispersion of $sigma_0=271pm28$ km s$^{-1}$. Metallicity gradients are throughout negative with comparatively flat slopes of $ abla_{[rm{Fe/H}]}=- 0.19pm0.08$ while age gradients are found to be insignificant ($ abla_{rm{age}}=0.00pm0.05$). All FCGs lie on the fundamental plane, suggesting that they are virialised systems. We find that gradient strengths and central metallicities are similar to those found in cluster ellipticals of similar mass. The comparatively flat metallicity gradients with respect to those predicted by monolithic collapse ($ abla_{Z}=-0.5$) suggest that fossils are indeed the result of multiple major mergers. Hence we conclude that fossils are not failed groups that formed with a top heavy luminosity function. The low scatter of gradient slopes suggests a similar merging history for all galaxies in our sample.
One of the biggest mysteries in cosmology is Dark Energy, which is required to explain the accelerated expansion of the universe within the standard model. But maybe one can explain the observations without introducing new physics, by simply taking o ne step back and re-examining one of the basic concepts of cosmology, homogeneity. In standard cosmology, it is assumed that the universe is homogeneous, but this is not true at small scales (<200 Mpc). Since general relativity, which is the basis of modern cosmology, is a non-linear theory, one can expect some backreactions in the case of an inhomogeneous matter distribution. Estimates of the magnitude of these backreactions (feedback) range from insignificant to being perfectly able to explain the accelerated expansion of the universe. In the end, the only way to be sure is to test predictions of inhomogeneous cosmological theories, such as timescape cosmology, against observational data. If these theories provide a valid description of the universe, one expects aside other effects, that there is a dependence of the Hubble parameter on the line of sight matter distribution. The redshift of a galaxy, which is located at a certain distance, is expected to be smaller if the environment in the line of sight is mainly high density (clusters), rather than mainly low density environment (voids). Here we present a test for this prediction using redshifts and fundamental plane distances of elliptical galaxies obtained from SDSS DR8 data. In order to get solid statistics, which can handle the uncertainties in the distance estimate and the natural scatter due to peculiar motions, one has to systematically study a very large number of galaxies. Therefore, the SDSS forms a perfect basis for testing timescape cosmology and similar theories. The preliminary results of this cosmological test are shown in this contribution.
Low-luminosity galaxies are known to outnumber the bright galaxy population in poor groups and clusters of galaxies. Yet, the investigation of low-luminosity galaxy populations outside the Local Group remains rare and the dependence on different grou p environments is still poorly understood. Previous investigations revealed photometric scaling relations for early-type dwarfs and a strong dependence of morphology with environment. The present study aims to analyse the photometric and spectroscopic properties of the low-luminosity galaxy population in the nearby, well-evolved and early-type dominated NGC 5846 group of galaxies. It is the third most massive aggregate of early-type galaxies after the Virgo and Fornax clusters in the local universe. Photometric scaling relations and the distribution of morphological types as well as the characteristics of emission-line galaxies are investigated. Spectroscopically selected low-luminosity group members from the Sloan Digital Sky Survey with cz<3000 km/s within a radius of 2 deg=0.91 Mpc around NGC 5846 are analysed. Surface brightness profiles of early-type galaxies are fit by a Sersic model r^(1/n). Star formation rates, oxygen abundances and emission characteristics are determined for emission-line galaxies. [abridged]
Numerical simulations as well as optical and X-ray observations over the last few years have shown that poor groups of galaxies can evolve to what is called a fossil group. Dynamical friction as the driving process leads to the coalescence of individ ual galaxies in ordinary poor groups leaving behind nothing more than a central, massive elliptical galaxy supposed to contain the merger history of the whole group. Due to merging timescales for less-massive galaxies and gas cooling timescales of the X-ray intragroup medium exceeding a Hubble time, a surrounding faint-galaxy population having survived this galactic cannibalism as well as an extended X-ray halo similar to that found in ordinary groups, is expected. Recent studies suggest that fossil groups are very abundant and could be the progenitors of brightest cluster galaxies (BCGs) in the centers of rich galaxy clusters. However, only a few objects are known to the literature. This article aims to summarize the results of observational fossil group research over the last few years and presents ongoing work by the authors. Complementary to previous research, the SDSS and RASS surveys have been cross-correlated to identify new fossil structures yielding 34 newly detected fossil group candidates. Observations with ISIS at the 4.2m William Herschel Telescope on La Palma have been carried out to study the stellar populations of the central ellipticals of 6 fossil groups. In addition multi-object spectroscopy with VLTs VIMOS has been performed to study the shape of the OLF of one fossil system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا