ترغب بنشر مسار تعليمي؟ اضغط هنا

The prevailing net-centric environment demands and enables modeling and simulation to combine efforts from numerous disciplines. Software techniques and methodology, in particular service-oriented architecture, provide such an opportunity. Service-or iented simulation has been an emerging paradigm following on from object- and process-oriented methods. However, the ad-hoc frameworks proposed so far generally focus on specific domains or systems and each has its pros and cons. They are capable of addressing different issues within service-oriented simulation from different viewpoints. It is increasingly important to describe and evaluate the progress of numerous frameworks. In this paper, we propose a novel three-dimensional reference model for a service-oriented simulation paradigm. The model can be used as a guideline or an analytic means to find the potential and possible future directions of the current simulation frameworks. In particular, the model inspects the crossover between the disciplines of modeling and simulation, service-orientation, and software/systems engineering. Based on the model, we present a comprehensive survey on several classical service-oriented simulation frameworks, including formalism-based, model-driven, interoperability protocol based, eXtensible Modeling and Simulation Framework (XMSF), and Open Grid Services Architecture (OGSA) based frameworks etc. The comparison of these frameworks is also performed. Finally the significance both in academia and practice are presented and future directions are pointed out.
To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic Federation Object Model (FOM), a modular FOM was proposed by High Level Architecture (HLA) Evolved product development group. This paper reviews the state-of-the-art of HLA Evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and Base Object Model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate composable simulation both in academia and practice is presented and future directions are pointed out.
This paper describes the use of the Levels of Conceptual Interoperability Model (LCIM) as a framework for conceptual modeling and its descriptive and prescriptive uses. LCIM is applied to show its potential and shortcomings in the current simulation interoperability approaches, in particular the High Level Architecture (HLA) and Base Object Models (BOM). It emphasizes the need to apply rigorous engineering methods and principles and replace ad-hoc approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا