ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the ground state phase diagram of a nonlinear two-photon Rabi-Hubbard (RH) model in one dimension using quantum Monte Carlo (QMC) simulations and density matrix renormalization group (DMRG) calculations. Our model includes a nonlinear photon -photon interaction term. Absent this term, the RH model has only one phase, the normal disordered phase, and suffers from spectral collapse at larger values of the photon-qubit interaction or inter-cavity photon hopping. The photon-photon interaction, no matter how small, stabilizes the system which now exhibits {it two} quantum phase transitions: Normal phase to {it photon pair} superfluid (PSF) transition and PSF to single particle superfluid (SPSF). The discrete $Z_4$ symmetry of the Hamiltonian spontaneously breaks in two stages: First it breaks partially as the system enters the PSF and then completely breaks when the system finally enters the SPSF phase. We show detailed numerical results supporting this, and map out the ground state phase diagram.
The theory of deconfined quantum critical points describes phase transitions at temperature T = 0 outside the standard paradigm, predicting continuous transformations between certain ordered states where conventional theory requires discontinuities. Numerous computer simulations have offered no proof of such transitions, however, instead finding deviations from expected scaling relations that were neither predicted by the DQC theory nor conform to standard scenarios. Here we show that this enigma can be resolved by introducing a critical scaling form with two divergent length scales. Simulations of a quantum magnet with antiferromagnetic and dimerized ground states confirm the form, proving a continuous transition with deconfined excitations and also explaining anomalous scaling at T > 0. Our findings revise prevailing paradigms for quantum criticality, with potentially far-reaching implications for many strongly-correlated materials.
67 - Hui Shao , Wenan Guo , 2015
We study the mechanism of decay of a topological (winding-number) excitation due to finite-size effects in a two-dimensional valence-bond solid state, realized in an $S=1/2$ spin model ($J$-$Q$ model) and studied using projector Monte Carlo simulatio ns in the valence bond basis. A topological excitation with winding number $|W|>0$ contains domain walls, which are unstable due to the emergence of long valence bonds in the wave function, unlike in effective descriptions with the quantum dimer model. We find that the life time of the winding number in imaginary time diverges as a power of the system length $L$. The energy can be computed within this time (i.e., it converges toward a quasi-eigenvalue before the winding number decays) and agrees for large $L$ with the domain-wall energy computed in an open lattice with boundary modifications enforcing a domain wall. Constructing a simplified two-state model and using the imaginary-time behavior from the simulations as input, we find that the real-time decay rate out of the initial winding sector is exponentially small in $L$. Thus, the winding number rapidly becomes a well-defined conserved quantum number for large systems, supporting the conclusions reached by computing the energy quasi-eigenvalues. Including Heisenberg exchange interactions which brings the system to a quantum-critical point separating the valence-bond solid from an antiferromagnetic ground state (the putative deconfined quantum-critical point), we can also converge the domain wall energy here and find that it decays as a power-law of the system size. Thus, the winding number is an emergent quantum number also at the critical point, with all winding number sectors becoming degenerate in the thermodynamic limit. This supports the description of the critical point in terms of a U(1) gauge-field theory.
163 - F. Y. Wu , Wenan Guo 2012
The $q$-state Potts model has stood at the frontier of research in statistical mechanics for many years. In the absence of a closed-form solution, much of the past efforts have focused on locating its critical manifold, trajectory in the parameter ${ q, e^J}$ space where $J$ is the reduced interaction, along which the free energy is singular. However, except in isolated cases, antiferromagnetic (AF) models with $J<0$ have been largely neglected. In this paper we consider the Potts model with AF interactions focusing on deducing its critical manifold in exact and/or closed-form expressions. We first re-examine the known critical frontiers in light of AF interactions. For the square lattice we confirm the Potts self-dual point to be the sole critical point for $J>0$. We also locate its critical frontier for $J<0$ and find it to coincide with a solvability condition observed by Baxter in 1982. For the honeycomb lattice we show that the known critical point holds for {all} $J$, and determine its critical $q_c = frac 1 2 (3+sqrt 5) = 2.61803$ beyond which there is no transition. For the triangular lattice we confirm the known critical point to hold only for $J>0$. More generally we consider the centered-triangle (CT) and Union-Jack (UJ) lattices consisting of mixed $J$ and $K$ interactions, and deduce critical manifolds under homogeneity hypotheses. For K=0 the CT lattice is the diced lattice, and we determine its critical manifold for all $J$ and find $q_c = 3.32472$. For K=0 the UJ lattice is the square lattice and from this we deduce both the $J>0$ and $J<0$ critical manifolds and find $q_c=3$ for the square lattice. Our theoretical predictions are compared with recent tensor-based numerical results and Monte Carlo simulations.
In a recent paper (arXiv:0911.2514), one of us (FYW) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for t he critical frontier with applications to various lattice models. For the triangular-type lattices Wus result is exact, and for the kagome-type lattices Wus expression is under a homogeneity assumption. The purpose of the present paper is two-fold: First, an essential step in Wus analysis is the derivation of lattice-dependent constants $A, B, C$ for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Secondly, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the $q$-state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices $(ntimes n):(ntimes n)$, $nleq 4$, for which the exact solution is not known. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical determination of critical thresholds is accurate to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices $(1times 1):(ntimes n)$ for $1leq n leq 6$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا