ترغب بنشر مسار تعليمي؟ اضغط هنا

This article is concerned with the dynamics of a mixture of gases. Under the assumption that all the gases are isothermal and inviscid, we show that the governing equations have an elegant conservation-dissipation structure. With the help of this str ucture, a multicomponent diffusion law is derived mathematically rigorously. This clarifies a long-standing non-uniqueness issue in the field for the first time. The multicomponent diffusion law derived here takes the spatial gradient of an entropic variable as the thermodynamic forces and satisfies a nonlinear version of the Onsager reciprocal relations.
63 - Wen-An Yong 2013
In this paper, we revise Maxwells constitutive relation and formulate a system of first-order partial differential equations with two parameters for compressible viscoelastic fluid flows. The system is shown to possess a nice conservation-dissipation (relaxation) structure and therefore is symmetrizable hyperbolic. Moreover, for smooth flows we rigorously verify that the revised Maxwells constitutive relations are compatible with Newtons law of viscosity.
240 - Wen-an Yong 2008
An Onsager-like relation is proposed as a new criterion for constructing and analysing the lattice Boltzmann (LB) method. For LB models obeying the relation, we analyse their linearized stability, establish their diffusive limit, and find new constra ints for those with free parameters. The new relation seems of fundamental importance for the LB method.
197 - Wen-an Yong 2007
This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal re lation in Modern Thermodynamics. It displays a direct relation of irreversible processes to the entropy change. We show that the properties imply various entropy dissipation conditions for hyperbolic relaxation problems. As an application of the observation, we propose an approximation method to solve relaxation problems. Moreover, the observation is interpreted physically and verified with eight (sets of) systems from different fields.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا