ترغب بنشر مسار تعليمي؟ اضغط هنا

In citation networks, the activity of papers usually decreases with age and dormant papers may be discovered and become fashionable again. To model this phenomenon, a competition mechanism is suggested which incorporates two factors: vigorousness and dormancy. Based on this idea, a citation network model is proposed, in which a node has two discrete stage: vigorous and dormant. Vigorous nodes can be deactivated and dormant nodes may be activated and become vigorous. The evolution of the network couples addition of new nodes and state transitions of old ones. Both analytical calculation and numerical simulation show that the degree distribution of nodes in generated networks displays a good right-skewed behavior. Particularly, scale-free networks are obtained as the deactivated vertex is target selected and exponential networks are realized for the random-selected case. Moreover, the measurement of four real-world citation networks achieves a good agreement with the stochastic model.
Discriminative patterns are association patterns that occur with disproportionate frequency in some classes versus others, and have been studied under names such as emerging patterns and contrast sets. Such patterns have demonstrated considerable val ue for classification and subgroup discovery, but a detailed understanding of the types of interactions among items in a discriminative pattern is lacking. To address this issue, we propose to categorize discriminative patterns according to four types of item interaction: (i) driver-passenger, (ii) coherent, (iii) independent additive and (iv) synergistic beyond independent additive. Either of the last three is of practical importance, with the latter two representing a gain in the discriminative power of a pattern over its subsets. Synergistic patterns are most restrictive, but perhaps the most interesting since they capture a cooperative effect. For domains such as genetic research, differentiating among these types of patterns is critical since each yields very different biological interpretations. For general domains, the characterization provides a novel view of the nature of the discriminative patterns in a dataset, which yields insights beyond those provided by current approaches that focus mostly on pattern-based classification and subgroup discovery. This paper presents a comprehensive discussion that defines these four pattern types and investigates their properties and their relationship to one another. In addition, these ideas are explored for a variety of datasets (ten UCI datasets, one gene expression dataset and two genetic-variation datasets). The results demonstrate the existence, characteristics and statistical significance of the different types of patterns. They also illustrate how pattern characterization can provide novel insights into discriminative pattern mining and the discriminative structure of different datasets.
157 - Xin-Wen Wang , Da-Chuang Li , 2009
We propose genuine ($k$, $m$)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of $m$ supervisors such that $k$ ($kleq m$) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known Greenberger-Horne-Zeilinger, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in literature. We show that our schemes are secure against both Bobs dishonesty and supervisors treacheries. For the latter case, the game theory is utilized to prove that supervisors cheats can be well prevented. In addition to their practical importance, our schemes are also useful in seeking and exploring genuine multipartite entangled states and opening another perspective for the applications of the game theory in quantum information science.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا