ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiable neural architecture search (DNAS) is known for its capacity in the automatic generation of superior neural networks. However, DNAS based methods suffer from memory usage explosion when the search space expands, which may prevent them f rom running successfully on even advanced GPU platforms. On the other hand, reinforcement learning (RL) based methods, while being memory efficient, are extremely time-consuming. Combining the advantages of both types of methods, this paper presents RADARS, a scalable RL-aided DNAS framework that can explore large search spaces in a fast and memory-efficient manner. RADARS iteratively applies RL to prune undesired architecture candidates and identifies a promising subspace to carry out DNAS. Experiments using a workstation with 12 GB GPU memory show that on CIFAR-10 and ImageNet datasets, RADARS can achieve up to 3.41% higher accuracy with 2.5X search time reduction compared with a state-of-the-art RL-based method, while the two DNAS baselines cannot complete due to excessive memory usage or search time. To the best of the authors knowledge, this is the first DNAS framework that can handle large search spaces with bounded memory usage.
A pruning-based AutoML framework for run-time reconfigurability, namely RT3, is proposed in this work. This enables Transformer-based large Natural Language Processing (NLP) models to be efficiently executed on resource-constrained mobile devices and reconfigured (i.e., switching models for dynamic hardware conditions) at run-time. Such reconfigurability is the key to save energy for battery-powered mobile devices, which widely use dynamic voltage and frequency scaling (DVFS) technique for hardware reconfiguration to prolong battery life. In this work, we creatively explore a hybrid block-structured pruning (BP) and pattern pruning (PP) for Transformer-based models and first attempt to combine hardware and software reconfiguration to maximally save energy for battery-powered mobile devices. Specifically, RT3 integrates two-level optimizations: First, it utilizes an efficient BP as the first-step compression for resource-constrained mobile devices; then, RT3 heuristically generates a shrunken search space based on the first level optimization and searches multiple pattern sets with diverse sparsity for PP via reinforcement learning to support lightweight software reconfiguration, which corresponds to available frequency levels of DVFS (i.e., hardware reconfiguration). At run-time, RT3 can switch the lightweight pattern sets within 45ms to guarantee the required real-time constraint at different frequency levels. Results further show that RT3 can prolong battery life over 4x improvement with less than 1% accuracy loss for Transformer and 1.5% score decrease for DistilBERT.
Along with the development of AI democratization, the machine learning approach, in particular neural networks, has been applied to wide-range applications. In different application scenarios, the neural network will be accelerated on the tailored co mputing platform. The acceleration of neural networks on classical computing platforms, such as CPU, GPU, FPGA, ASIC, has been widely studied; however, when the scale of the application consistently grows up, the memory bottleneck becomes obvious, widely known as memory-wall. In response to such a challenge, advanced quantum computing, which can represent 2^N states with N quantum bits (qubits), is regarded as a promising solution. It is imminent to know how to design the quantum circuit for accelerating neural networks. Most recently, there are initial works studying how to map neural networks to actual quantum processors. To better understand the state-of-the-art design and inspire new design methodology, this paper carries out a case study to demonstrate an end-to-end implementation. On the neural network side, we employ the multilayer perceptron to complete image classification tasks using the standard and widely used MNIST dataset. On the quantum computing side, we target IBM Quantum processors, which can be programmed and simulated by using IBM Qiskit. This work targets the acceleration of the inference phase of a trained neural network on the quantum processor. Along with the case study, we will demonstrate the typical procedure for mapping neural networks to quantum circuits.
Powerful yet complex deep neural networks (DNNs) have fueled a booming demand for efficient DNN solutions to bring DNN-powered intelligence into numerous applications. Jointly optimizing the networks and their accelerators are promising in providing optimal performance. However, the great potential of such solutions have yet to be unleashed due to the challenge of simultaneously exploring the vast and entangled, yet different design spaces of the networks and their accelerators. To this end, we propose DNA, a Differentiable Network-Accelerator co-search framework for automatically searching for matched networks and accelerators to maximize both the task accuracy and acceleration efficiency. Specifically, DNA integrates two enablers: (1) a generic design space for DNN accelerators that is applicable to both FPGA- and ASIC-based DNN accelerators and compatible with DNN frameworks such as PyTorch to enable algorithmic exploration for more efficient DNNs and their accelerators; and (2) a joint DNN network and accelerator co-search algorithm that enables simultaneously searching for optimal DNN structures and their accelerators micro-architectures and mapping methods to maximize both the task accuracy and acceleration efficiency. Experiments and ablation studies based on FPGA measurements and ASIC synthesis show that the matched networks and accelerators generated by DNA consistently outperform state-of-the-art (SOTA) DNNs and DNN accelerators (e.g., 3.04x better FPS with a 5.46% higher accuracy on ImageNet), while requiring notably reduced search time (up to 1234.3x) over SOTA co-exploration methods, when evaluated over ten SOTA baselines on three datasets. All codes will be released upon acceptance.
Real-time cardiac magnetic resonance imaging (MRI) plays an increasingly important role in guiding various cardiac interventions. In order to provide better visual assistance, the cine MRI frames need to be segmented on-the-fly to avoid noticeable vi sual lag. In addition, considering reliability and patient data privacy, the computation is preferably done on local hardware. State-of-the-art MRI segmentation methods mostly focus on accuracy only, and can hardly be adopted for real-time application or on local hardware. In this work, we present the first hardware-aware multi-scale neural architecture search (NAS) framework for real-time 3D cardiac cine MRI segmentation. The proposed framework incorporates a latency regularization term into the loss function to handle real-time constraints, with the consideration of underlying hardware. In addition, the formulation is fully differentiable with respect to the architecture parameters, so that stochastic gradient descent (SGD) can be used for optimization to reduce the computation cost while maintaining optimization quality. Experimental results on ACDC MICCAI 2017 dataset demonstrate that our hardware-aware multi-scale NAS framework can reduce the latency by up to 3.5 times and satisfy the real-time constraints, while still achieving competitive segmentation accuracy, compared with the state-of-the-art NAS segmentation framework.
Hardware and neural architecture co-search that automatically generates Artificial Intelligence (AI) solutions from a given dataset is promising to promote AI democratization; however, the amount of time that is required by current co-search framewor ks is in the order of hundreds of GPU hours for one target hardware. This inhibits the use of such frameworks on commodity hardware. The root cause of the low efficiency in existing co-search frameworks is the fact that they start from a cold state (i.e., search from scratch). In this paper, we propose a novel framework, namely HotNAS, that starts from a hot state based on a set of existing pre-trained models (a.k.a. model zoo) to avoid lengthy training time. As such, the search time can be reduced from 200 GPU hours to less than 3 GPU hours. In HotNAS, in addition to hardware design space and neural architecture search space, we further integrate a compression space to conduct model compressing during the co-search, which creates new opportunities to reduce latency but also brings challenges. One of the key challenges is that all of the above search spaces are coupled with each other, e.g., compression may not work without hardware design support. To tackle this issue, HotNAS builds a chain of tools to design hardware to support compression, based on which a global optimizer is developed to automatically co-search all the involved search spaces. Experiments on ImageNet dataset and Xilinx FPGA show that, within the timing constraint of 5ms, neural architectures generated by HotNAS can achieve up to 5.79% Top-1 and 3.97% Top-5 accuracy gain, compared with the existing ones.
Despite the pursuit of quantum advantages in various applications, the power of quantum computers in neural network computations has mostly remained unknown, primarily due to a missing link that effectively designs a neural network model suitable for quantum circuit implementation. In this article, we present the co-design framework, namely QuantumFlow, to provide such a missing link. QuantumFlow consists of novel quantum-friendly neural networks (QF-Nets), a mapping tool (QF-Map) to generate the quantum circuit (QF-Circ) for QF-Nets, and an execution engine (QF-FB). We discover that, in order to make full use of the strength of quantum representation, it is best to represent data in a neural network as either random variables or numbers in unitary matrices, such that they can be directly operated by the basic quantum logical gates. Based on these data representations, we propose two quantum friendly neural networks, QF-pNet and QF-hNet in QuantumFlow. QF-pNet using random variables has better flexibility, and can seamlessly connect two layers without measurement with more qbits and logical gates than QF-hNet. On the other hand, QF-hNet with unitary matrices can encode 2^k data into k qbits, and a novel algorithm can guarantee the cost complexity to be O(k^2). Compared to the cost of O(2^k)in classical computing, QF-hNet demonstrates the quantum advantages. Evaluation results show that QF-pNet and QF-hNet can achieve 97.10% and 98.27% accuracy, respectively. Results further show that for input sizes of neural computation grow from 16 to 2,048, the cost reduction of QuantumFlow increased from 2.4x to 64x. Furthermore, on MNIST dataset, QF-hNet can achieve accuracy of 94.09%, while the cost reduction against the classical computer reaches 10.85x. To the best of our knowledge, QuantumFlow is the first work to demonstrate the potential quantum advantage on neural network computation.
Co-exploration of neural architectures and hardware design is promising to simultaneously optimize network accuracy and hardware efficiency. However, state-of-the-art neural architecture search algorithms for the co-exploration are dedicated for the conventional von-neumann computing architecture, whose performance is heavily limited by the well-known memory wall. In this paper, we are the first to bring the computing-in-memory architecture, which can easily transcend the memory wall, to interplay with the neural architecture search, aiming to find the most efficient neural architectures with high network accuracy and maximized hardware efficiency. Such a novel combination makes opportunities to boost performance, but also brings a bunch of challenges. The design space spans across multiple layers from device type, circuit topology to neural architecture. In addition, the performance may degrade in the presence of device variation. To address these challenges, we propose a cross-layer exploration framework, namely NACIM, which jointly explores device, circuit and architecture design space and takes device variation into consideration to find the most robust neural architectures. Experimental results demonstrate that NACIM can find the robust neural network with 0.45% accuracy loss in the presence of device variation, compared with a 76.44% loss from the state-of-the-art NAS without consideration of variation; in addition, NACIM achieves an energy efficiency up to 16.3 TOPs/W, 3.17X higher than the state-of-the-art NAS.
In the recent past, the success of Neural Architecture Search (NAS) has enabled researchers to broadly explore the design space using learning-based methods. Apart from finding better neural network architectures, the idea of automation has also insp ired to improve their implementations on hardware. While some practices of hardware machine-learning automation have achieved remarkable performance, the traditional design concept is still followed: a network architecture is first structured with excellent test accuracy, and then compressed and optimized to fit into a target platform. Such a design flow will easily lead to inferior local-optimal solutions. To address this problem, we propose a new framework to jointly explore the space of neural architecture, hardware implementation, and quantization. Our objective is to find a quantized architecture with the highest accuracy that is implementable on given hardware specifications. We employ FPGAs to implement and test our designs with limited loop-up tables (LUTs) and required throughput. Compared to the separate design/searching methods, our framework has demonstrated much better performance under strict specifications and generated designs of higher accuracy by 18% to 68% in the task of classifying CIFAR10 images. With 30,000 LUTs, a light-weight design is found to achieve 82.98% accuracy and 1293 images/second throughput, compared to which, under the same constraints, the traditional method even fails to find a valid solution.
Real-time Deep Neural Network (DNN) inference with low-latency requirement has become increasingly important for numerous applications in both cloud computing (e.g., Apples Siri) and edge computing (e.g., Google/Waymos driverless car). FPGA-based DNN accelerators have demonstrated both superior flexibility and performance; in addition, for real-time inference with low batch size, FPGA is expected to achieve further performance improvement. However, the performance gain from the single-FPGA design is obstructed by the limited on-chip resource. In this paper, we employ multiple FPGAs to cooperatively run DNNs with the objective of achieving super-linear speed-up against single-FPGA design. In implementing such systems, we found two barriers that hinder us from achieving the design goal: (1) the lack of a clear partition scheme for each DNN layer to fully exploit parallelism, and (2) the insufficient bandwidth between the off-chip memory and the accelerator due to the growing size of DNNs. To tackle these issues, we propose a general framework, Super-LIP, which can support different kinds of DNNs. In this paper, we take Convolutional Neural Network (CNN) as a vehicle to illustrate Super-LIP. We first formulate an accurate system-level model to support the exploration of best partition schemes. Then, we develop a novel design methodology to effectively alleviate the heavy loads on memory bandwidth by moving traffic from memory bus to inter-FPGA links. We implement Super-LIP based on ZCU102 FPGA boards. Results demonstrate that Super-LIP with 2 FPGAs can achieve 3.48x speedup, compared to the state-of-the-art single-FPGA design. What is more, as the number of FPGAs scales up, the system latency can be further reduced while maintaining high energy efficiency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا