ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate an unusual symmetry of Fe-based superconductors (FeSCs) and find novel superconducting pairing structures. FeSCs have a minimal translational unit cell composed of two Fe atoms due to the staggered positions of anions with respect to t he Fe plane. We study the physical consequences of the additional glide symmetry that further reduces the unit cell to have only one Fe atoms. In the regular momentum space, it not only leads to a particular orbital parity separated spectral function but also dictates orbital parity distinct pairing structures. Furthermore, it produces accompanying Cooper pairs of $(pi,pi,0)$ momentum, which have a characteristic textit{odd} form factor and break time reversal symmetry. Such novel pairing structures explain the unusual angular modulations of the superconducting gaps on the hole pockets in recent ARPES and STS experiments.
79 - Chao Ma , Lijun Wu , Wei-Guo Yin 2014
We use a quantitative convergent beam electron diffraction (CBED) based method to image the valence electron density distribution in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. We show a remarkable increase in both the charge quadrupole of the Fe cations and the charge dipole of the arsenic anions upon Co doping from $x=0$ ($T_c=0$ K) to $x=0.1$ ($T_c=22.5$ K). Our data suggest that an unexpected electronic correlation effect, namely strong coupling of Fe orbital fluctuation and anion electronic polarization, is present in iron-based superconductors.
We report a combined experimental and theoretical study of the unusual ferromagnetism in the one-dimensional copper-iridium oxide Sr$_3$CuIrO$_6$. Utilizing Ir $L_3$ edge resonant inelastic x-ray scattering, we reveal a large gap magnetic excitation spectrum. We find that it is caused by an unusual exchange anisotropy generating mechanism, namely, strong ferromagnetic anisotropy arising from antiferromagnetic superexchange, driven by the alternating strong and weak spin-orbit coupling on the $5d$ Ir and 3d Cu magnetic ions, respectively. From symmetry consideration, this novel mechanism is generally present in systems with edge-sharing Cu$^{2+}$O$_4$ plaquettes and Ir$^{4+}$O$_6$ octahedra. Our results point to unusual magnetic behavior to be expected in mixed 3d-5d transition-metal compounds via exchange pathways that are absent in pure 3d or 5d compounds.
137 - Wei-Guo Yin , Chi-Cheng Lee , 2012
We examine the relevance of several major material-dependent parameters to the magnetic softness in iron-base superconductors by first-principles electronic structure analysis of their parent compounds. The results are explained in the spin-fermion m odel where localized spins and orbitally degenerate itinerant electrons coexist and are coupled by Hunds rule coupling. We found that the difference in the strength of the Hunds rule coupling term is the major material-dependent microscopic parameter for determining the ground-state spin pattern. The magnetic softness in iron-based superconductors is essentially driven by the competition between the double-exchange ferromagnetism and the superexchange antiferromagnetism.
125 - Wei-Guo Yin , Chi-Cheng Lee , 2010
The varying metallic antiferromagnetic correlations observed in iron-based superconductors are unified in a model consisting of both itinerant electrons and localized spins. The decisive factor is found to be the sensitive competition between the sup erexchange antiferromagnetism and the orbital-degenerate double-exchange ferromagnetism. Our results reveal the crucial role of Hunds rule coupling for the strongly correlated nature of the system and suggest that the iron-based superconductors are closer kin to manganites than cuprates in terms of their diverse magnetism and incoherent normal-state electron transport. This unified picture would be instrumental for exploring other exotic properties and the mechanism of superconductivity in this new class of superconductors.
42 - Wei-Guo Yin , Wei Ku 2009
We present an approximative simulation method for quantum many-body systems based on coarse graining the space of the momentum transferred between interacting particles, which leads to effective Hamiltonians of reduced size with the flavor-twisted bo undary condition. A rapid, accurate, and fast convergent computation of the ground-state energy is demonstrated on the spin-1/2 quantum antiferromagnet of any dimension by employing only two sites. The method is expected to be useful for future simulations and quick estimates on other strongly correlated systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا