ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep learning-based single image super-resolution (SISR) methods face various challenges when applied to 3D medical volumetric data (i.e., CT and MR images) due to the high memory cost and anisotropic resolution, which adversely affect their performa nce. Furthermore, mainstream SISR methods are designed to work over specific upsampling factors, which makes them ineffective in clinical practice. In this paper, we introduce a Spatially Aware Interpolation NeTwork (SAINT) for medical slice synthesis to alleviate the memory constraint that volumetric data poses. Compared to other super-resolution methods, SAINT utilizes voxel spacing information to provide desirable levels of details, and allows for the upsampling factor to be determined on the fly. Our evaluations based on 853 CT scans from four datasets that contain liver, colon, hepatic vessels, and kidneys show that SAINT consistently outperforms other SISR methods in terms of medical slice synthesis quality, while using only a single model to deal with different upsampling factors.
Metal artifact reduction (MAR) in computed tomography (CT) is a notoriously challenging task because the artifacts are structured and non-local in the image domain. However, they are inherently local in the sinogram domain. Thus, one possible approac h to MAR is to exploit the latter characteristic by learning to reduce artifacts in the sinogram. However, if we directly treat the metal-affected regions in sinogram as missing and replace them with the surrogate data generated by a neural network, the artifact-reduced CT images tend to be over-smoothed and distorted since fine-grained details within the metal-affected regions are completely ignored. In this work, we provide analytical investigation to the issue and propose to address the problem by (1) retaining the metal-affected regions in sinogram and (2) replacing the binarized metal trace with the metal mask projection such that the geometry information of metal implants is encoded. Extensive experiments on simulated datasets and expert evaluations on clinical images demonstrate that our novel network yields anatomically more precise artifact-reduced images than the state-of-the-art approaches, especially when metallic objects are large.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا