ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - Xinle Shang , Wei Zuo 2013
We propose an axisymmetric angle-dependent gap (ADG) state with the broken rotational symmetry in isospin-asymmetric nuclear matter. In this state, the deformed Fermi spheres of neutrons and protons increase the pairing probabilities along the axis o f symmetry breaking near the average Fermi surface. We find that the state possesses lower free energy and larger gap value than the angle-averaged gap state at large isospin asymmetries. These properties are mainly caused by the coupling of different m_{j} components of the pairing gap. Furthermore, we find the transition from the ADG state to the normal state is of second order and the ADG state vanishes at the critical isospin asymmetry m_{j} where the angle-averaged gap vanishes.
We have made a phase-sensitive measurement on the corner junction of the iron-based superconductor BaFe1.8Co0.2As2, and observed the typical Fraunhofer-like diffraction pattern. The result suggests that there is no phase shift between the a-c face an d b-c face of a crystal, which indicates that the superconducting wavefunction of the iron based superconductor is different from that of a cuprate superconductor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا