ترغب بنشر مسار تعليمي؟ اضغط هنا

The recent measurement on the decay constant of $D_s$ shows a discrepancy between theory and experiment. We study the leptonic and semileptonic decays of $D$ and $D_s$ simultaneously within the standard model by employing a lightfront quark model. Th ere is space by tuning phenomenological parameters which can explain the $f_{D_s}$ puzzle and do not contradict other experiments on the semileptonic decays. We also investigate the leptonic decays of D and $D_{s}$ with a new physics scenario, unparticle physics. The unparticle effects induce a constructive interference with the standard model contribution. The nontrivial phase in unparticle physics could produce direct CP violation which may distinguish it from other new physics scenarios.
An important concern in the application of gamma-ray bursts (GRBs) to cosmology is that the calibration of GRB luminosity/energy relations depends on the cosmological model, due to the lack of a sufficient low-redshift GRB sample. In this paper, we p resent a new method to calibrate GRB relations in a cosmology-independent way. Since objects at the same redshift should have the same luminosity distance and since the distance moduli of Type Ia supernovae (SNe Ia) obtained directly from observations are completely cosmology independent, we obtain the distance modulus of a GRB at a given redshift by interpolating from the Hubble diagram of SNe Ia. Then we calibrate seven GRB relations without assuming a particular cosmological model and construct a GRB Hubble diagram to constrain cosmological parameters. From the 42 GRBs at $1.4<zle6.6$, we obtain $Omega_{rm M}=0.25_{-0.05}^{+0.04}$, $Omega_{Lambda}=0.75_{-0.04}^{+0.05}$ for the flat $Lambda$CDM model, and for the dark energy model with a constant equation of state $w_0=-1.05_{-0.40}^{+0.27}$, which is consistent with the concordance model in a 1-$sigma$ confidence region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا