ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation ca n lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.
Convolutional neural networks perform well on object recognition because of a number of recent advances: rectified linear units (ReLUs), data augmentation, dropout, and large labelled datasets. Unsupervised data has been proposed as another way to im prove performance. Unfortunately, unsupervised pre-training is not used by state-of-the-art methods leading to the following question: Is unsupervised pre-training still useful given recent advances? If so, when? We answer this in three parts: we 1) develop an unsupervised method that incorporates ReLUs and recent unsupervised regularization techniques, 2) analyze the benefits of unsupervised pre-training compared to data augmentation and dropout on CIFAR-10 while varying the ratio of unsupervised to supervised samples, 3) verify our findings on STL-10. We discover unsupervised pre-training, as expected, helps when the ratio of unsupervised to supervised samples is high, and surprisingly, hurts when the ratio is low. We also use unsupervised pre-training with additional color augmentation to achieve near state-of-the-art performance on STL-10.
We propose a method of accelerating the speed of evolution of an open system by an external classical driving field for a qubit in a zero-temperature structured reservoir. It is shown that, with a judicious choice of the driving strength of the appli ed classical field, a speed-up evolution of an open system can be achieved in both the weak system-environment couplings and the strong system-environment couplings. By considering the relationship between non-Makovianity of environment and the classical field, we can drive the open system from the Markovian to the non-Markovian regime by manipulating the driving strength of classical field. That is the intrinsic physical reason that the classical field may induce the speed-up process. In addition, the roles of this classical field on the variation of quantum evolution speed in the whole decoherence process is discussed.
Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the prese nce of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exactly expressions of quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical to quantum decoherence.
We investigate the generic bound on the minimal evolution time of the open dynamical quantum system. This quantum speed limit time is applicable to both mixed and pure initial states. We then apply this result to the damped Jaynes-Cummings model and the Ohimc-like dephasing model starting from a general time-evolution state. The bound of this time-dependent state at any point in time can be found. For the damped Jaynes-Cummings model, the corresponding bound first decreases and then increases in the Markovian dynamics. While in the non-Markovian regime, the speed limit time shows an interesting periodic oscillatory behavior. For the case of Ohimc-like dephasing model, this bound would be gradually trapped to a fixed value. In addition, the roles of the relativistic effects on the speed limit time for the observer in non-inertial frames are discussed.
Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin transport measurements on graphene spin valves exhibit a dip in the non-local spin signal as a function of applied magnetic field, which is due to scattering ( relaxation) of pure spin currents by exchange coupling to the magnetic moments. Furthermore, Hanle spin precession measurements indicate the presence of an exchange field generated by the magnetic moments. The entire experiment including spin transport is performed in an ultrahigh vacuum chamber, and the characteristic signatures of magnetic moment formation appear only after hydrogen adatoms are introduced. Lattice vacancies also demonstrate similar behavior indicating that the magnetic moment formation originates from pz-orbital defects.
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lor entzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا