ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe an experimental technique for associating the satellite lines in a rare earth optical spectrum caused by a defect with the rare earth ions in crystal sites around that defect. This method involves measuring the hyperfine splitting caused by a magnetic dipole-dipole interaction between host ions and a magnetic defect. The method was applied to Ce3+:EuCl3.6H2O to assign 13 of the outermost 22 satellite lines to sites. The assignments show that the optical shift of a satellite line is loosely dependent on the distance to the dopant. The interaction between host and dopant ions is purely dipole-dipole at distances greater than 7 Angstroms, with an additional contribution, likely superexchange, at distances less than 7 Angstroms.
This work reports an ESR study of low energy, low fluence phosphorus ion implantation into silicon in order to observe the activation of phosphorus donors placed in close proximity to the Si-SiO2 interface. Electrical measurements, which were used to estimate donor activation levels, reported high implant recoveries when using 14 keV phosphorus ions however, it was not possible to correlate the intensity of the hyperfine resonance signal with the electrical measurements in the presence of an SiO2 interface due to donor state ionisation (i.e. compensation effects). Comparative measurements made on silicon with an H-passivated surface reported higher donor hyperfine signal levels consistent with lower surface defect densities at the interface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا