ترغب بنشر مسار تعليمي؟ اضغط هنا

The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity / minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph o f order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z_+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.
Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n x n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which in ertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, and investigate restrictions on the inertia set of any graph.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا