ترغب بنشر مسار تعليمي؟ اضغط هنا

We present optical and infrared photometric and spectroscopic studies of two Be stars in the 70--80-Myr-old open cluster NGC 6834. NGC 6834(1) has been reported as a binary from speckle interferometric studies whereas NGC 6834(2) may possibly be a ga mma Cas-like variable. Infrared photometry and spectroscopy from the United Kingdom Infrared Telescope (UKIRT), and optical data from various facilities are combined with archival data to understand the nature of these candidates. High signal-to-noise near-IR spectra obtained from UKIRT have enabled us to study the optical depth effects in the hydrogen emission lines of these stars. We have explored the spectral classification scheme based on the intensity of emission lines in the $H$ and $K$ bands and contrasted it with the conventional classification based on the intensity of hydrogen and helium absorption lines. This work also presents hitherto unavailable UBV CCD photometry of NGC 6834, from which the evolutionary state of the Be stars is identified.
Aims: We aim to understand the star formation associated with the luminous young stellar object (YSO) IRAS 18345-0641 and to address the complications arising from unresolved multiplicity in interpreting the observations of massive star-forming regio ns. Methods: New infrared imaging data at sub-arcsec spatial resolution are obtained for IRAS 18345-0641. The new data are used along with mid- and far-IR imaging data, and CO (J=3-2) spectral line maps downloaded from archives to identify the YSO and study the properties of the outflow. Available radiative-transfer models are used to analyze the spectral energy distribution (SED) of the YSO. Results: Previous tentative detection of an outflow in the H_2 (1-0) S1 line (2.122 micron) is confirmed through new and deeper observations. The outflow appears to be associated with a YSO discovered at infrared wavelengths. At high angular resolution, we see that the YSO is probably a binary. The CO (3--2) lines also reveal a well defined outflow. Nevertheless, the direction of the outflow deduced from the H_2 image does not agree with that mapped in CO. In addition, the age of the YSO obtained from the SED analysis is far lower than the dynamical time of the outflow. We conclude that this is probably caused by the contributions from a companion. High-angular-resolution observations at mid-IR through mm wavelengths are required to properly understand the complex picture of the star formation happening in this system, and generally in massive star forming regions, which are located at large distances from us.
The luminous Young Stellar Object (YSO) IRAS 07422-2001 is studied in the infrared. We discover star forming activity in embedded clusters located in a cloud detected at mid-IR wavelengths in emission. Multiple outflows are discovered from these clus ters in the H_2 ro-vibrational line at 2.122 micron. We detect at least six outflows from the cluster associated with the IRAS source and another outflow from a source located in a cluster detected ~2.7 arcmin NE of the IRAS source. Additional star formation is taking place in two other cluster candidates within the cloud. Three of the YSOs in the cluster associated with the IRAS source are detected at 11.2 micron at an angular resolution of ~0.8 arcsec. We have a tentative detection of a circumstellar disk in this cluster, seen as an extinction lane in the J and H-band images. The spectral energy distributions (SEDs) of the dominant YSOs in the cluster associated with the IRAS source and in the NE cluster are studied using radiative transfer models and the properties of the YSOs are estimated. The YSO associated with the IRAS source is probably in a very early Class I stage of formation. The source identified as the dominant YSO in the NE cluster appears to be older than the dominant YSO in the cluster associated with the IRAS source, but its observed flux seems to be contaminated by extra emission, which suggests the presence of a young source contributing to the SED at far-IR wavelengths. The star formation observed in the field of IRAS 07422-2001 supports the idea of hierarchical formation of massive star clusters and the growth of massive young stellar objects near the centres of multiple sub-clusters in a star forming clump through competitive accretion.
We have carried out a near-infrared imaging survey of luminous young stellar outflow candidates using the United Kingdom Infrared Telescope. Observations were obtained in the broad band K (2.2 mu) and through narrow band filters at the wavelengths of H_2 v=1--0 S(1) (2.1218 mu) and Br gamma (2.166 mu) lines. Fifty regions were imaged with a field of view of 2.2 X 2.2 arcmin^2. Several young embedded clusters are unveiled in our near-infrared images. 76% of the objects exhibit H_2 emission and 50% or more of the objects exhibit aligned H_2 emission features suggesting collimated outflows, many of which are new detections. These observations suggest that disk accretion is probably the leading mechanism in the formation of stars, at least up to late O spectral types. The young stellar objects responsible for many of these outflows are positively identified in our images based on their locations with respect to the outflow lobes, 2MASS colours and association with MSX, IRAS, millimetre and radio sources. The close association of molecular outflows detected in CO with the H_2 emission features produced by shock excitation by jets from the young stellar objects suggests that the outflows from these objects are jet-driven. Towards strong radio emitting sources, H_2 jets were either not detected or were weak when detected, implying that most of the accretion happens in the pre-UCHII phase; accretion and outflows are probably weak when the YSO has advanced to its UCHII stage.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا