ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate a lock-in particle tracking scheme in optical tweezers based on stroboscopic modulation of an illuminating optical field. This scheme is found to evade low frequency noise sources while otherwise producing an equivalent position measur ement to continuous measurement. This was demonstrated, and found to yield on average 20dB of noise suppression in the frequency range 10-5000 Hz, where low frequency laser noise and electronic noise was significant, and 35 dB of noise suppression in the range 550-710 kHz where laser relaxation oscillations introduced laser noise. The setup is simple, and compatible with any trapping optics.
A general quantum limit to the sensitivity of particle position measurements is derived following the simple principle of the Heisenberg microscope. The value of this limit is calculated for particles in the Rayleigh and Mie scattering regimes, and w ith parameters which are relevant to optical tweezers experiments. The minimum power required to observe the zero-point motion of a levitating bead is also calculated, with the optimal particle diameter always smaller than the wavelength. We show that recent optical tweezers experiments are within two orders of magnitude of quantum limited sensitivity, suggesting that quantum optical resources may soon play an important role in high sensitivity tracking applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا