ترغب بنشر مسار تعليمي؟ اضغط هنا

Right ventricular (RV) segmentation from magnetic resonance imaging (MRI) is a crucial step for cardiac morphology and function analysis. However, automatic RV segmentation from MRI is still challenging, mainly due to the heterogeneous intensity, the complex variable shapes, and the unclear RV boundary. Moreover, current methods for the RV segmentation tend to suffer from performance degradation at the basal and apical slices of MRI. In this work, we propose an automatic RV segmentation framework, where the information from long-axis (LA) views is utilized to assist the segmentation of short-axis (SA) views via information transition. Specifically, we employed the transformed segmentation from LA views as a prior information, to extract the ROI from SA views for better segmentation. The information transition aims to remove the surrounding ambiguous regions in the SA views. %, such as the tricuspid valve regions. We tested our model on a public dataset with 360 multi-center, multi-vendor and multi-disease subjects that consist of both LA and SA MRIs. Our experimental results show that including LA views can be effective to improve the accuracy of the SA segmentation. Our model is publicly available at https://github.com/NanYoMy/MMs-2.
Multi-modality medical images can provide relevant or complementary information for a target (organ, tumor or tissue). Registering multi-modality images to a common space can fuse these comprehensive information, and bring convenience for clinical ap plication. Recently, neural networks have been widely investigated to boost registration methods. However, it is still challenging to develop a multi-modality registration network due to the lack of robust criteria for network training. In this work, we propose a multi-modality registration network (MMRegNet), which can perform registration between multi-modality images. Meanwhile, we present spatially encoded gradient information to train MMRegNet in an unsupervised manner. The proposed network was evaluated on MM-WHS 2017. Results show that MMRegNet can achieve promising performance for left ventricle cardiac registration tasks. Meanwhile, to demonstrate the versatility of MMRegNet, we further evaluate the method with a liver dataset from CHAOS 2019. Source code will be released publiclyfootnote{https://github.com/NanYoMy/mmregnet} once the manuscript is accepted.
Deep learning (DL)-based models have demonstrated good performance in medical image segmentation. However, the models trained on a known dataset often fail when performed on an unseen dataset collected from different centers, vendors and disease popu lations. In this work, we present a random style transfer network to tackle the domain generalization problem for multi-vendor and center cardiac image segmentation. Style transfer is used to generate training data with a wider distribution/ heterogeneity, namely domain augmentation. As the target domain could be unknown, we randomly generate a modality vector for the target modality in the style transfer stage, to simulate the domain shift for unknown domains. The model can be trained in a semi-supervised manner by simultaneously optimizing a supervised segmentation and an unsupervised style translation objective. Besides, the framework incorporates the spatial information and shape prior of the target by introducing two regularization terms. We evaluated the proposed framework on 40 subjects from the M&Ms challenge2020, and obtained promising performance in the segmentation for data from unknown vendors and centers.
Both image registration and label fusion in the multi-atlas segmentation (MAS) rely on the intensity similarity between target and atlas images. However, such similarity can be problematic when target and atlas images are acquired using different ima ging protocols. High-level structure information can provide reliable similarity measurement for cross-modality images when cooperating with deep neural networks (DNNs). This work presents a new MAS framework for cross-modality images, where both image registration and label fusion are achieved by DNNs. For image registration, we propose a consistent registration network, which can jointly estimate forward and backward dense displacement fields (DDFs). Additionally, an invertible constraint is employed in the network to reduce the correspondence ambiguity of the estimated DDFs. For label fusion, we adapt a few-shot learning network to measure the similarity of atlas and target patches. Moreover, the network can be seamlessly integrated into the patch-based label fusion. The proposed framework is evaluated on the MM-WHS dataset of MICCAI 2017. Results show that the framework is effective in both cross-modality registration and segmentation.
Multi-sequence of cardiac magnetic resonance (CMR) images can provide complementary information for myocardial pathology (scar and edema). However, it is still challenging to fuse these underlying information for pathology segmentation effectively. T his work presents an automatic cascade pathology segmentation framework based on multi-modality CMR images. It mainly consists of two neural networks: an anatomical structure segmentation network (ASSN) and a pathological region segmentation network (PRSN). Specifically, the ASSN aims to segment the anatomical structure where the pathology may exist, and it can provide a spatial prior for the pathological region segmentation. In addition, we integrate a denoising auto-encoder (DAE) into the ASSN to generate segmentation results with plausible shapes. The PRSN is designed to segment pathological region based on the result of ASSN, in which a fusion block based on channel attention is proposed to better aggregate multi-modality information from multi-modality CMR images. Experiments from the MyoPS2020 challenge dataset show that our framework can achieve promising performance for myocardial scar and edema segmentation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا