ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effect of gas pressure on the generation of high-order harmonics where harmonics due to individual atoms are calculated using the recently developed quantitative rescattering theory, and the propagation of the laser and harmonics in the medium is calculated by solving the Maxwells wave equation. We illustrate that the simulated spectra are very sensitive to the laser focusing conditions at high laser intensity and high pressure since the fundamental laser field is severely reshaped during the propagation. By comparing the simulated results with several experiments we show that the pressure dependence can be qualitatively explained. The lack of quantitative agreement is tentatively attributed to the failure of the complete knowledge of the experimental conditions.
We investigate the dynamic evolution of the radiation forces produced by the pulsed Gaussian beams acting on a Rayleigh dielectric sphere. We derive the analytical expressions for the scattering force and all components of the ponderomotive force ind uced by the pulsed Gaussian beams. Our analysis shows that the radiation force, for both the transverse and longitudinal components, can be greatly enhanced as the pulse duration decreases. It is further found that for the pulse with long pulse duration, it can be used for the stable trapping and manipulating the particle, while for the pulse with short pulse duration it may be used for guiding and moving the small dielectric particle. Finally we discuss the stability conditions of the effective manipulating the particle by the pulsed beam.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا