ترغب بنشر مسار تعليمي؟ اضغط هنا

128 - Pu Du , Jian-Min Wang , Chen Hu 2013
The metallicity of active galactic nuclei (AGNs), which can be measured by emission line ratios in their broad and narrow line regions (BLRs and NLRs), provides invaluable information about the physical connection between the different components of AGNs. From the archival databases of the International Ultraviolet Explorer, the Hubble Space Telescope and the Sloan Digital Sky Survey, we have assembled the largest sample available of AGNs which have adequate spectra in both the optical and ultraviolet bands to measure the narrow line ratio [N II]/H{alpha} and also, in the same objects, the broad-line N V/C IV ratio. These permit the measurement of the metallicities in the NLRs and BLRs in the same objects. We find that neither the BLR nor the NLR metallicity correlate with black hole masses or Eddington ratios, but there is a strong correlation between NLR and BLR metallicities. This metallicity correlation implies that outflows from BLRs carry metal-rich gas to NLRs at characteristic radial distances of ~ 1.0 kiloparsec. This chemical connection provides evidence for a kinetic feedback of the outflows to their hosts. Metals transported into the NLR enhance the cooling of the ISM in this region, leading to local star formation after the AGNs turn to narrow line LINERs. This post-AGN star formation is predicted to be observable as an excess continuum emission from the host galaxies in the near infrared and ultraviolet, which needs to be further explored.
While iterative quantizers based on low-density generator-matrix (LDGM) codes have been shown to be able to achieve near-ideal distortion performance with comparatively moderate block length and computational complexity requirements, their analysis r emains difficult due to the presence of decimation steps. In this paper, considering the use of LDGM-based quantizers in a class of symmetric source coding problems, with the alphabet being either binary or non-binary, it is proved rigorously that, as long as the degree distribution satisfies certain conditions that can be evaluated with density evolution (DE), the belief propagation (BP) marginals used in the decimation step have vanishing mean-square error compared to the exact marginals when the block length and iteration count goes to infinity, which potentially allows near-ideal distortion performances to be achieved. This provides a sound theoretical basis for the degree distribution optimization methods previously proposed in the literature and already found to be effective in practice.
In this paper, critical global connectivity of mobile ad hoc communication networks (MAHCN) is investigated. We model the two-dimensional plane on which nodes move randomly with a triangular lattice. Demanding the best communication of the network, w e account the global connectivity $eta$ as a function of occupancy $sigma$ of sites in the lattice by mobile nodes. Critical phenomena of the connectivity for different transmission ranges $r$ are revealed by numerical simulations, and these results fit well to the analysis based on the assumption of homogeneous mixing . Scaling behavior of the connectivity is found as $eta sim f(R^{beta}sigma)$, where $R=(r-r_{0})/r_{0}$, $r_{0}$ is the length unit of the triangular lattice and $beta$ is the scaling index in the universal function $f(x)$. The model serves as a sort of site percolation on dynamic complex networks relative to geometric distance. Moreover, near each critical $sigma_c(r)$ corresponding to certain transmission range $r$, there exists a cut-off degree $k_c$ below which the clustering coefficient of such self-organized networks keeps a constant while the averaged nearest neighbor degree exhibits a unique linear variation with the degree k, which may be useful to the designation of real MAHCN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا