ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents a multilingual study on, per single post of microblog text, (a) how much can be said, (b) how much is written in terms of characters and bytes, and (c) how much is said in terms of information content in posts by different organiz ations in different languages. Focusing on three different languages (English, Chinese, and Japanese), this research analyses Weibo and Twitter accounts of major embassies and news agencies. We first establish our criterion for quantifying how much can be said in a digital text based on the openly available Universal Declaration of Human Rights and the translated subtitles from TED talks. These parallel corpora allow us to determine the number of characters and bits needed to represent the same content in different languages and character encodings. We then derive the amount of information that is actually contained in microblog posts authored by selected accounts on Weibo and Twitter. Our results confirm that languages with larger character sets such as Chinese and Japanese contain more information per character than English, but the actual information content contained within a microblog text varies depending on both the type of organization and the language of the post. We conclude with a discussion on the design implications of microblog text limits for different languages.
In recent years, program verifiers and interactive theorem provers have become more powerful and more suitable for verifying large programs or proofs. This has demonstrated the need for improving the user experience of these tools to increase product ivity and to make them more accessible to non-experts. This paper presents an integrated development environment for Dafny-a programming language, verifier, and proof assistant-that addresses issues present in most state-of-the-art verifiers: low responsiveness and lack of support for understanding non-obvious verification failures. The paper demonstrates several new features that move the state-of-the-art closer towards a verification environment that can provide verification feedback as the user types and can present more helpful information about the program or failed verifications in a demand-driven and unobtrusive way.
Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work we inv estigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly-inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the restframe wavelengths 3700-8000 angstrom, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the HII region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the HII region.
Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGN to b e composed mainly of stellar light and non-variable on the time-scales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multi-epoch data in the Sloan Digital Sky Survey (SDSS) Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ~700 days) covering a wavelength range of 3900-8900 angstrom. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of two. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average -- the spectroscopic variability of the continuum is 0.07+/-0.26 mag in the g band and, for the emission-line ratios log10([NII]/Halpha) and log10([OIII]/Hbeta), the variability is 0.02+/-0.03 dex and 0.06+/-0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of varying spectral component, presumably related to AGN activities, and that of host galaxy to be ~30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars and quasars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا