ترغب بنشر مسار تعليمي؟ اضغط هنا

Two major questions in galaxy evolution are how star-formation on small scales leads to global scaling laws and how galaxies acquire sufficient gas to sustain their star formation rates. HI observations with high angular resolution and with sensitivi ty to very low column densities are some of the important observational ingredients that are currently still missing. Answers to these questions are necessary for a correct interpretation of observations of galaxy evolution in the high-redshift universe and will provide crucial input for the sub-grid physics in hydrodynamical simulations of galaxy evolutions. In this chapter we discuss the progress that will be made with the SKA using targeted observations of nearby individual disk and dwarf galaxies.
Magnetic fields play an important role in shaping the structure and evolution of the interstellar medium (ISM) of galaxies, but the details of this relationship remain unclear. With SKA1, the 3D structure of galactic magnetic fields and its connectio n to star formation will be revealed. A highly sensitive probe of the internal structure of the magnetoionized ISM is the partial depolarization of synchrotron radiation from inside the volume. Different configurations of magnetic field and ionized gas within the resolution element of the telescope lead to frequency-dependent changes in the observed degree of polarization. The results of spectro-polarimetric observations are tied to physical structure in the ISM through comparison with detailed modeling, supplemented with the use of new analysis techniques that are being actively developed and studied within the community such as Rotation Measure Synthesis. The SKA will enable this field to come into its own and begin the study of the detailed structure of the magnetized ISM in a sample of nearby galaxies, thanks to its extraordinary wideband capabilities coupled with the combination of excellent surface brightness sensitivity and angular resolution.
Observed HI accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion happens in the form of low column density cold flow s, as predicted by numerical simulations of galaxy formation. To contrain the presence and properties of such flows, we present deep HI observations obtained with the NRAO Green Bank Telescope of an area measuring 4 by 4 degrees around NGC 2403. These observations, with a 5 sigma detection limit of 2.4 x 10^18 cm^-2 over a 20 km/s linewidth, reveal the presence of a low-column density, extended cloud outside the main HI disk, about 17 (~16 kpc or ~2R25) to the NW of the center of the galaxy. The total HI mass of the cloud is 6.3 x 10^6 Msun, or 0.15 percent of the total HI mass of NGC 2403. The cloud is associated with an 8-kpc anomalous-velocity HI filament in the inner disk, previously observed in deep VLA observations by Fraternali et al. (2001, 2002). We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigbouring dwarf galaxy.
We present deep HI imaging of the nearby spiral galaxy NGC 4414, taken as part of the Westerbork HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) survey. The observations show that NGC 4414 can be characterized by a regularly rotating inner HI disk, an d a more disturbed outer disk. Modeling of the kinematics shows that the outer disk is best described by a U-shaped warp. Deep optical imaging also reveals the presence of a low surface brightness stellar shell, indicating a minor interaction with a dwarf galaxy at some stage in the past. Modeling of the inner disk suggests that about 4 percent of the inner HI is in the form of extra-planar gas. Because of the the disturbed nature of the outer disk, this number is difficult to constrain for the galaxy as a whole. These new, deep observations of NGC 4414 presented here show that even apparently undisturbed galaxies are interacting with their environment.
The dynamical mass (M_dyn) is a key property of any galaxy, yet a determination of M_dyn is not straight-forward if spatially resolved measurements are not available. This situation occurs in single-dish HI observations of the local universe, but als o frequently in high-redshift observations. M_dyn-measurements in high-redshift galaxies are commonly obtained through observations of the CO line, the most abundant tracer of the molecular medium. Even though the CO linewidth can in most cases be determined with reasonable accuracy, a measurement of the size of the emitting region is typically challenging given current facilities. We show how the integrated spectra (`global profiles) of a variety of galaxy models depend on the spatial distribution of the tracer gas as well as its velocity dispersion. We demonstrate that the choice of tracer emission line significantly affects the shape of the global profiles. In particular, in the case of high (~50 kms-1) velocity dispersions, compact tracers (such as CO) result in Gaussian-like (non-double-horned) profiles, as is indeed frequently seen in high-redshift observations. We determine at which radii the rotation curve reaches the rotation velocity corresponding to the velocity width, and find that for each tracer this happens at a well-defined radius: HI velocity widths typically originate at ~5 optical scale lengths, while CO velocity widths trace the rotation velocity at ~2 scale lengths. We additionally explore other distributions to take into account that CO distributions at high redshift likely differ from those at low redshift. Our models, while not trying to reproduce individual galaxies, define characteristic radii that can be used in conjunction with the measured velocity widths in order to define dynamical masses consistent with the assumed gas distribution.
273 - B. W. Holwerda 2013
Scale-invariant morphology parameters applied to atomic hydrogen maps (HI) of galaxies can be used to quantify the effects of tidal interaction or star-formation on the ISM. Here we apply these parameters, Concentration, Asymmetry, Smoothness, Gini, M20, and the GM parameter, to two public surveys of nearby dwarf galaxies, the VLA-ANGST and LITTLE-THINGS survey, to explore whether tidal interaction or the ongoing or past star-formation is a dominant force shaping the HI disk of these dwarfs. Previously, HI morphological criteria were identified for ongoing spiral-spiral interactions. When we apply these to the Irregular dwarf population, they either select almost all or none of the population. We find that only the Asymmetry-based criteria can be used to identify very isolated dwarfs (i.e., these have a low tidal indication). Otherwise, there is little or no relation between the level of tidal interaction and the HI morphology. We compare the HI morphology to three star-formation rates based on either Halpha, FUV or the resolved stellar population, probing different star-formation time-scales. The HI morphology parameters that trace the inequality of the distribution, the Gini, GM, and M20 parameters, correlate weakly with all these star-formation rates. This is in line with the picture that local physics dominates the ISM appearance and not tidal effects. Finally, we compare the SDSS measures of star-formation and stellar mass to the HI morphological parameters for all four HI surveys. In the two lower-resolution HI surveys (12), there is no relation between star-formation measures and HI morphology. The morphology of the two high-resolution HI surveys (6), the Asymmetry, Smoothness, Gini, M20, and GM, do show a link to the total star-formation, but a weak one.
110 - W.J.G. de Blok 2009
This paper gives an overview of the attempts to determine the distribution of dark matter in low surface brightness disk and gas-rich dwarf galaxies, both through observations and computer simulations. Observations seem to indicate an approximately c onstant dark matter density in the inner parts of galaxies, while cosmological computer simulations indicate a steep power-law-like behaviour. This difference has become known as the core/cusp problem, and remains one of the unsolved problems in small-scale cosmology.
We present the specifications of the MeerKAT Karoo Array Telescope, the South African Square Kilometre Array Precursor. Some of the key science for MeerKAT is described in this document. We invite the community to submit proposals for Large Key Projects.
87 - W.J.G. de Blok 2008
We present rotation curves of 19 galaxies from THINGS, The HI Nearby Galaxy Survey. The high spatial and velocity resolution of THINGS make these the highest quality HI rotation curves available to date for a large sample of nearby galaxies, spanning a wide range of HI masses and luminosities. The high quality of the data allows us to derive the geometrical and dynamical parameters using HI data alone. We do not find any declining rotation curves unambiguously associated with a cut-off in the mass distribution out to the last measured point. The rotation curves are combined with 3.6 um data from SINGS (Spitzer Infrared Nearby Galaxies Survey) to construct mass models. Our best-fit, dynamical disk masses, derived from the rotation curves, are in good agreement with photometric disk masses derived from the 3.6 um images in combination with stellar population synthesis arguments and two different assumptions for the stellar Initial Mass Function (IMF). We test the Cold Dark Matter-motivated cusp model, and the observationally motivated central density core model and find that (independent of IMF) for massive, disk-dominated galaxies, all halo models fit apparently equally well; for low-mass galaxies, however, a core-dominated halo is clearly preferred over a cuspy halo. The empirically derived densities of the dark matter halos of the late-type galaxies in our sample are half of what is predicted by CDM simulations, again independent of the assumed IMF.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا