ترغب بنشر مسار تعليمي؟ اضغط هنا

Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap cry stals to enable or improve persistent spectral hole-burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band, and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5, a widely-used material in current quantum memory research.
Decoherence of the 795 nm $^3$H$_6$ to $^3$H$_4$ transition in 1%Tm$^{3+}$:Y$_3$Ga$_5$O$_{12}$ (Tm:YGG) is studied at temperatures as low as 1.2 K. The temperature, magnetic field, frequency, and time-scale (spectral diffusion) dependence of the opti cal coherence lifetime is measured. Our results show that the coherence lifetime is impacted less by spectral diffusion than other known thulium-doped materials. Photon echo excitation and spectral hole burning methods reveal uniform decoherence properties and the possibility to produce full transparency for persistent spectral holes across the entire 56 GHz inhomogeneous bandwidth of the optical transition. Temperature-dependent decoherence is well described by elastic Raman scattering of phonons with an additional weaker component that may arise from a low density of glass-like dynamic disorder modes (two-level systems). Analysis of the observed behavior suggests that an optical coherence lifetime approaching one millisecond may be possible in this system at temperatures below 1 K for crystals grown with optimized properties. Overall, we find that Tm:YGG has superior decoherence properties compared to other Tm-doped crystals and is a promising candidate for applications that rely on long coherence lifetimes, such as optical quantum memories and photonic signal processing.
We investigate the relevant spectroscopic properties of the 795 nm $^3$H$_6$$leftrightarrow$$^3$H$_4$ transition in 1% Tm$^{3+}$:Y$_3$Ga$_5$O$_{12}$ at temperatures as low as 1.2 K for optical quantum memories based on persistent spectral tailoring o f narrow absorption features. Our measurements reveal that this transition has uniform coherence properties over a 56 GHz bandwidth, and a simple hyperfine structure split by $pm$44 MHz/T with lifetimes of up to hours. Furthermore, we find a $^3$F$_4$ population lifetime of 64 ms -- one of the longest lifetimes observed for an electronic level in a solid --, and an exceptionally long coherence lifetime of 490 $mu$s -- the longest ever observed for optical transitions of Tm$^{3+}$ ions in a crystal. Our results suggest that this material allows realizing broadband quantum memories that enable spectrally multiplexed quantum repeaters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا