ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility $chi$ can emit and absorb radiation at enhanced rates bounded by $|chi|^2 / textrm{Im} chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restrict
Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted sticti on between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.
A non-invasive, in-situ calibration method for Total Internal Reflection Microscopy (TIRM) based on optical tweezing is presented which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particles absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 $mu$m from the surface. This represents an approximate 10x improvement in error and 3x improvement in measurement range over conventional TIRM methods. The techniques advantage is in the direct measurement of the probe particles scattering intensity vs. height profile in-situ, rather than relying on calculations or inexact system analogs for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle.
Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, utilization of Casimir forces on the chip level remains a major challenge because all experiments so far require an external object to be manually positioned close to the mechanical element. Here, by integrating a force-sensing micromechanical beam and an electrostatic actuator on a single chip, we demonstrate the Casimir effect between two micromachined silicon components on the same substrate. A high degree of parallelism between the two near-planar interacting surfaces can be achieved because they are defined in a single lithographic step. Apart from providing a compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes.
The famous Johnson-Nyquist formula relating noise current to conductance has a microscopic generalization relating noise current density to microscopic conductivity, with corollary relations governing noise in the components of the electromagnetic fi elds. These relations, known collectively in physics as fluctuation-dissipation relations, form the basis of the modern understanding of fluctuation-induced phenomena, a field of burgeoning importance in experimental physics and nanotechnology. In this review, we survey recent progress in computational techniques for modeling fluctuation-induced phenomena, focusing on two cases of particular interest: near-field radiative heat transfer and Casimir forces. In each case we review the basic physics of the phenomenon, discuss semi-analytical and numerical algorithms for theoretical analysis, and present recent predictions for novel phenomena in complex material and geometric configurations.
We extend a previous result [Phys. Rev. Lett. 105, 090403 (2010)] on Casimir repulsion between a plate with a hole and a cylinder centered above it to geometries in which the central object can no longer be treated as a point dipole. We show through numerical calculations that as the distance between the plate and central object decreases, there is an intermediate regime in which the repulsive force increases dramatically. Beyond this, the force rapidly switches over to attraction as the separation decreases further to zero, in line with the proximity force approximation. We demonstrate that this effect can be understood as a competition between an increased repulsion due to a larger polarizability of the central object interacting with increased fringing fields near the edge of the plate, and attractive forces due primarily to the nonzero thickness of the plate. In comparison with our previous work, we find that using the same plate geometry but replacing the single cylinder with a ring of cylinders, or more generally an extended uniaxial conductor, the repulsive force can be enhanced by a factor of approximately $10^3$. We conclude that this enhancement, although quite dramatic, is still too small to yield detectable repulsive Casimir forces.
We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above ena ble all-optical control and actuation of stiction effects induced by the Casimir force. In this way, one can control how the Casimir force is expressed in the mechanical dynamics of the membrane, not by changing the Casimir force directly but by optically modifying the geometry and counteracting the mechanical spring constant to bring the system in or out of regimes where Casimir physics dominate. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.
We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of guided-wave resonances that was first predicted in symmetric systems. Our focus is a geometry consisting of a photonic-crystal (holey) membrane suspended above an unpatterned layered substrate, supporting planar waveguide modes that can couple via the periodic modulation of the holey membrane. Asymmetric geometries have a clear advantage in ease of fabrication and experimental characterization compared to symmetric double-membrane structures. We show that the asymmetry can also lead to unusual behavior in the force magnitudes of a bonding/antibonding pair as the membrane separation changes, including nonmonotonic dependences on the separation. We propose a computational method that obtains the entire force spectrum via a single time-domain simulation, by Fourier-transforming the response to a short pulse and thereby obtaining the frequency-dependent stress tensor. We point out that by operating with two, instead of a single frequency, these evanescent forces can be exploited to tune the spring constant of the membrane without changing its equilibrium separation.
Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dic luster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.
We propose a method of achieving large temperature sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in fluid. We study the Casimir force between slabs and spheres using realistic mater ial models, and find large > 2nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in temperature . Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as the temperature is varied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا