ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - J. Yang , G. W. Lin , Y. P. Niu 2014
The spectrum width can be narrowed to a certain degree by decreasing the coupling strength for the two-level emitter coupled to the propagating surface plasmon. But the width can not be narrowed any further because of the loss of the photon out of sy stem by spontaneous emission from the emitter. Here we propose a new scheme to construct a narrow-band source via a one-dimensional waveguide coupling with a three-level emitter. It is shown that the reflective spectrum width can be narrowed avoiding the impact of the loss. This approach opens up the possibility of plasmonic ultranarrow single-photon source.
169 - X. Liu , W. Lin , R. Wada 2014
Symmetry energy, temperature and density at the time of the intermediate mass fragment formation are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope yields and anti-symmetrized molecular dynamics (AM D) simulations. The yields of primary hot fragments are experimentally reconstructed for multifragmentation events in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modified Fisher model, symmetry energy values relative to the apparent temperature, $a_{sym}/T$, are extracted. The extracted values are compared with those of the AMD simulations, extracted in the same way as that for the experiment, with the Gogny interaction with three different density-dependent symmetry energy terms. $a_{sym}/T$ values change according to the density-dependent symmetry energy terms used. Using this relation, the density of the fragmenting system is extracted first. Then symmetry energy and apparent temperature are determined in a self consistent manner in the AMD model simulations. Comparing the calculated $a_{sym}/T$ values and those of the experimental values from the reconstructed yields, $rho /rho_{0} = 0.65 pm 0.02 $, $a_{sym} = 23.1 pm 0.6$ MeV and $T= 5.0 pm 0.4$ MeV are evaluated for the fragmenting system experimentally observed in the reaction studied.
The characteristic properties of the hot nuclear matter existing at the time of fragment formation in the multifragmentation events produced in the reaction $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon are studied. A kinematical focusing method is employ ed to determine the multiplicities of evaporated light particles, associated with isotopically identified detected fragments. From these data the primary isotopic yield distributions are reconstructed using a Monte Carlo method. The reconstructed yield distributions are in good agreement with the primary isotope distributions obtained from AMD transport model simulations. Utilizing the reconstructed yields, power distribution, Landau free energy, characteristic properties of the emitting source are examined. The primary mass distributions exhibit a power law distribution with the critical exponent, $A^{-2.3}$, for $A geq 15$ isotopes, but significantly deviates from that for the lighter isotopes. Landau free energy plots show no strong signature of the first order phase transition. Based on the Modified Fisher Model, the ratios of the Coulomb and symmetry energy coefficients relative to the temperature, $a_{c}/T$ and $a_{sym}/T$, are extracted as a function of A. The extracted $a_{sym}/T$ values are compared with results of the AMD simulations using Gogny interactions with different density dependencies of the symmetry energy term. The calculated $a_{sym}/T$ values show a close relation to the symmetry energy at the density at the time of the fragment formation. From this relation the density of the fragmenting source is determined to be $rho /rho_{0} = (0.63 pm 0.03 )$. Using this density, the symmetry energy coefficient and the temperature of fragmenting source are determined in a self-consistent manner as $a_{sym} = (24.7 pm 3.4) MeV$ and $T=(4.9 pm 0.2)$ MeV.
Quasi-phase matched direct laser acceleration (DLA) of electrons can be realized with guided, radially polarized laser pulses in density-modulated plasma waveguides. A 3-D particle-in-cell model has been developed to describe the interactions among t he laser field, injected electrons, and the background plasma in the DLA process. Simulations have been conducted to study the scheme in which seed electron bunches with moderate energies are injected into a plasma waveguide and the DLA is performed by use of relatively low-power (0.5-2 TW) laser pulses. Selected bunch injection delays with respect to the laser pulse, bunch lengths, and bunch transverse sizes have been studied in a series of simulations of DLA in a plasma waveguide. The results show that the injection delay is important for controlling the final transverse properties of short electron bunches, but it also affects the final energy gain. With a long injected bunch length, the enhanced ion-focusing force helps to collimate the electrons and a relatively small final emittance can be obtained. DLA efficiency is reduced when a bunch with a greater transverse size is injected; in addition, micro-bunching is clearly observed due to the focusing and defocusing of electrons by the radially directed Lorentz force. DLA should be performed with a moderate laser power to maintain favorable bunch transverse properties, while the waveguide length can be extended to obtain a higher maximum energy gain, with the commensurate increase of laser pulse duration and energy.
P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur with a similar orbit to that of the famous 29P/Schwassmann-Wachmann 1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1) sky survey from 2010 to 2012. The resulting data a llow us to perform multi-color studies of the nucleus and coma of the comet. Analysis of PS1 images reveals that P/2011 S1 (Gibbs) has a small nucleus $< 4$ km radius, with colors $g_{P1}-r_{P1} = 0.5 pm 0.02$, $r_{P1}-i_{P1} = 0.12 pm 0.02$ and $i_{P1}-z_{P1} = 0.46 pm 0.03$. The comet remained active from 2010 to 2012, with a model-dependent mass-loss rate of $sim100$ kg s$^{-1}$. The mass-loss rate per unit surface area of P/2011 S1 (Gibbs) is as high as that of 29P/Schwassmann-Wachmann 1, making it one of the most active Centaurs. The mass-loss rate also varies with time from $sim 40$ kg s$^{-1}$ to 150 kg s$^{-1}$. Due to its rather circular orbit, we propose that P/2011 S1 (Gibbs) has 29P/Schwassmann-Wachmann 1-like outbursts that control the outgassing rate. The results indicate that it may have a similar surface composition to that of 29P/Schwassmann-Wachmann 1. Our numerical simulations show that the future orbital evolution of P/2011 S1 (Gibbs) is more similar to that of the main population of Centaurs than to that of 29P/Schwassmann-Wachmann 1. The results also demonstrate that P/2011 S1 (Gibbs) is dynamically unstable and can only remain near its current orbit for roughly a thousand years.
For the first time primary hot isotope distributions are experimentally reconstructed in intermediate heavy ion collisions and used with antisymmetrized molecular dynamics (AMD) calculations to determine density, temperature and symmetry energy coeff icient in a self-consistent manner. A kinematical focusing method is employed to reconstruct the primary hot fragment yield distributions for multifragmentation events observed in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. The reconstructed yield distributions are in good agreement with the primary isotope distributions of AMD simulations. The experimentally extracted values of the symmetry energy coefficient relative to the temperature, $a_{sym}/T$, are compared with those of the AMD simulations with different density dependence of the symmetry energy term. The calculated $a_{sym}/T$ values changes according to the different interactions. By comparison of the experimental values of $a_{sym}/T$ with those of calculations, the density of the source at fragment formation was determined to be $rho /rho_{0} = (0.63 pm 0.03 )$. Using this density, the symmetry energy coefficient and the temperature are determined in a self-consistent manner as $a_{sym} = (24.7 pm 1.9) MeV$ and $T=(4.9 pm 0.2)$ MeV
436 - G. W. Lin , X. B. Zou , X. M. Lin 2013
We propose a scheme to implement a heralded quantum memory for single-photon polarization qubits with a single atom trapped in an optical cavity. In this scheme, an injected photon only exchanges quantum state with the atom, so that the heralded stor age can be achieved by detecting the output photon. We also demonstrate that the scheme can be used for realizing the heralded quantum state transfer, exchange and entanglement distribution between distant nodes. The ability to detect whether the operation has succeeded or not is crucial for practical application.
62 - G. W. Lin , J. Yang , X. M. Lin 2013
We perform a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically induced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of cavity polaritons: bright-state polari ton and dark-state polariton. Strong coupling of the bright-state polariton to the excited state induces an effect known as vacuum Rabi splitting, whereas the dark-state polariton decoupled from the excited state induce a narrow cavity transmission window. Our analysis would provide a quantum theory of linewidth narrowing with a quantum field pulse at the single-photon level.
139 - G. W. Lin , Y. H. Qi , X. M. Lin 2013
We consider the dynamics of intracavity electromagnetically induced transparency (EIT) in an ensemble of strongly interacting Rydberg atoms. By combining the advantage of variable cavity lifetimes with intracavity EIT and strongly interacting Rydberg dark-state polaritons, we show that such intracavity EIT system could exhibit very strong photon blockade effect.
65 - G. W. Lin , Y. P. Niu , T. Huang 2012
We propose a technique for quantum nondemolition (QND) measurement and heralded preparation of Fock states by dynamics of electromagnetically induced transparency (EIT). An atomic ensemble trapped in an optical cavity is driven by two external contin uous-wave classical fields to form EIT in steady state. As soon as a weak coherent field is injected into the cavity, the EIT system departs from steady state, falls into transient state dynamics by the dispersive coupling between cavity injected photons and atoms. Because the imaginary part of time-dependent linear susceptibility Im[X(t)] of the atomic medium explicitly depends on the number n of photons during the process of transient state dynamics, the measurement on the change of transmission of the probe field can be used for QND measurement of small photon number, and thus create the photon Fock states in particular single-photon state in a heralded way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا