ترغب بنشر مسار تعليمي؟ اضغط هنا

The three dimensional structure of the brightest part of the Orion Nebula is assessed in the light of published and new data. We find that the widely accepted model of a concave blister of ionized material needs to be altered in the southwest directi on from the Trapezium, where we find that the Orion-S feature is a separate cloud of very optically thick molecules within the body of ionized gas, which is probably the location of the multiple embedded sources that produce the outflows that define the Orion-S star formation region. Evidence for this cloud comes from the presence of H2CO lines in absorption in the radio continuum and discrepancies in the extinction derived from radio-optical and optical only emission. We present an equilibrium Cloudy model of the Orion-S cloud, which successfully reproduces many observed properties of this feature. We also report the discovery of an open-sided shell of [O III] surrounding the Trapezium stars, revealed through emission line ratio images and the onset of radiation shadows beyond some proplyds. We show that the observed properties of the shell are consistent with it being a stationary structure, produced by shock interactions between the ambient nebular gas and the high-velocity wind from theta^1 Ori C. We examine the implications of the recently published evidence for a large blueshifted velocity of theta^1 Ori C with respect to the Orion Molecular Cloud, which could mean that this star has only recently begun to photoionize the Orion Nebula. We show that current observations of the Nebula do not rule out such a possibility, so long as the ionization front has propagated into a pre-existing low-density region. In addition, a young age for the Nebula would help explain the presence of nearby proplyds with a short mass-loss timescale to photoablation.
We have used widely spaced in time Hubble Space Telescope images to determine tangential velocities of features associated with outflows from young stars. These observations were supplemented by groundbased telescope spectroscopy and from the resulta nt radial velocities, space velocities were determined for many outflows. Numerous new moving features were found and grouped into known and newly assigned Herbig Haro objects. It was found that stellar outflow is highly discontinuous, as frequently is the case, with long-term gaps of a few hundred years and that these outflow periods are marked by staccato bursts over periods of about ten years. Although this has been observed in other regions, the Orion Nebula Cluster presents the richest display of this property. Most of the large scale Herbig Haro objects in the brightest part of the Orion Nebula appear to originate from a small region northeast of the strong Orion-S radio and infrared sources. With the possible exception of HH 203, we are not able to identify specific stellar sources, but do identify candidate sources for several other bright Herbig Haro objects. We find that there are optical features in the BN-KL region that can be related to the known large scale outflow that originates there. We find additional evidence for this outflow originating 500 to 1000 years ago.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا