ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - E. Furlan 2009
We use Spitzer data to infer that the small infrared excess of V819 Tau, a weak-lined T Tauri star in Taurus, is real and not attributable to a companion 10 arcsec to the south. We do not confirm the mid-infrared excess in HBC 427 and V410 X-ray 3, w hich are also non-accreting T Tauri stars in the same region; instead, for the former object, the excess arises from a red companion 9 arcsec to the east. A single-temperature blackbody fit to the continuum excess of V819 Tau implies a dust temperature of 143 K; however, a better fit is achieved when the weak 10 and 20 micron silicate emission features are also included. We infer a disk of sub-micron silicate grains between about 1 AU and several 100 AU with a constant surface density distribution. The mid-infrared excess of V819 Tau can be successfully modeled with dust composed mostly of small amorphous olivine grains at a temperature of 85 K, and most of the excess emission is optically thin. The disk could still be primordial, but gas-poor and therefore short-lived, or already at the debris disk stage, which would make it one of the youngest debris disk systems known.
We present the Spitzer Infrared Spectrograph (IRS) spectrum of SR20, a 5--10 AU binary T Tauri system in the $rho$ Ophiuchi star forming region. The spectrum has features consistent with the presence of a disk; however, the continuum slope is steeper than the $lambda^{-4/3}$ slope of an infinite geometrically thin, optically thick disk, indicating that the disk is outwardly truncated. Comparison with photometry from the literature shows a large increase in the mid-infrared flux from 1993 to 1996. We model the spectral energy distribution and IRS spectrum with a wall + optically thick irradiated disk, yielding an outer radius of 0.39$_{+0.03}^{-0.01}$ AU, much smaller than predicted by models of binary orbits. Using a two temperature $chi^2$ minimization model to fit the dust composition of the IRS spectrum, we find the disk has experienced significant grain growth: its spectrum is well-fit using opacities of grains larger than 1 $mu$m. We conclude that the system experienced a significant gravitational perturbation in the 1990s.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا