ترغب بنشر مسار تعليمي؟ اضغط هنا

148 - S.-W. Chang , Y.-I. Byun , 2015
We present a comprehensive re-analysis of stellar photometric variability in the field of the open cluster M37 following the application of a new photometry and de-trending method to MMT/Megacam image archive. This new analysis allows a rare opportun ity to explore photometric variability over a broad range of time-scales, from minutes to a month. The intent of this work is to examine the entire sample of over 30,000 objects for periodic, aperiodic, and sporadic behaviors in their light curves. We show a modified version of the fast $chi^{2}$ periodogram algorithm (F$chi^{2}$) and change-point analysis (CPA) as tools for detecting and assessing the significance of periodic and non-periodic variations. The benefits of our new photometry and analysis methods are evident. A total of 2306 stars exhibit convincing variations that are induced by flares, pulsations, eclipses, starspots, and unknown causes in some cases. This represents a 60% increase in the number of variables known in this field. Moreover, 30 of the previously identified variables are found to be false positives resulting from time-dependent systematic effects. New catalog includes 61 eclipsing binary systems, 92 multiperiodic variable stars, 132 aperiodic variables, and 436 flare stars, as well as several hundreds of rotating variables. Based on extended and improved catalog of variables, we investigate the basic properties (e.g., period, amplitude, type) of all variables. The catalog can be accessed through the web interface (http://stardb.yonsei.ac.kr/).
46 - S.-W. Chang , Y.-I. Byun , 2015
We introduce new methods for robust high-precision photometry from well-sampled images of a non-crowded field with a strongly varying point-spread function. For this work, we used archival imaging data of the open cluster M37 taken by MMT 6.5m telesc ope. We find that the archival light curves from the original image subtraction procedure exhibit many unusual outliers, and more than 20% of data get rejected by the simple filtering algorithm adopted by early analysis. In order to achieve better photometric precisions and also to utilize all available data, the entire imaging database was re-analyzed with our time-series photometry technique (Multi-aperture Indexing Photometry) and a set of sophisticated calibration procedures. The merit of this approach is as follows: we find an optimal aperture for each star with a maximum signal-to-noise ratio, and also treat peculiar situations where photometry returns misleading information with more optimal photometric index. We also adopt photometric de-trending based on a hierarchical clustering method, which is a very useful tool in removing systematics from light curves. Our method removes systematic variations that are shared by light curves of nearby stars, while true variabilities are preserved. Consequently, our method utilizes nearly 100% of available data and reduce the rms scatter several times smaller than archival light curves for brighter stars. This new data set gives a rare opportunity to explore different types of variability of short (~minutes) and long (~1 month) time scales in open cluster stars.
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example whe re the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Sub-gap resonances for odd electron occupan cy---interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related resonances at higher magnetic fields. An additional zero bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
Resistance oscillations in electronic Fabry-Perot interferometers near fractional quantum Hall (FQH) filling factors 1/3, 2/3, 4/3 and 5/3 in the constrictions are compared to corresponding oscillations near integer quantum Hall (IQH) filling factors in the constrictions, appearing in the same devices and at the same gate voltages. Two-dimensional plots of resistance versus gate voltage and magnetic field indicate that all oscillations are Coulomb dominated. Applying a Coulomb charging model yields an effective tunneling charge e* approx e/3 for all FQH constrictions and e* approx e for IQH constrictions. Surprisingly, we find a common characteristic temperature for FQH oscillations and a different common characteristic temperature for IQH oscillations.
66 - P. Jiang , A. F. Young , W. Chang 2010
We have measured the microwave conductance of mechanically exfoliated graphene at frequencies up to 8.5 GHz. The conductance at 4.2 K exhibits quantum oscillations, and is independent of the frequency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا